

The International Arab Conference on Information Technology (ACIT’2015)

IHadoop: Improve MapReduce Performance

Mohammed Qunper, Osama Badawy, Mohammed Kholief College of Computing and Information

Technology, Arab Academy for Science, Technology, and Maritime Transport, Alexandria, Egypt

m.qunper@gmail.com, obadawy@aast.edu, kholief@aast.edu

Abstract: The performance of Hadoop dependent on many of points, the data partitioning is one of this point, the node

specification is the other point. In the real world, the data is often highly skewed, which may cause losing time for the jobs. In

this paper we study the skew problem in reduce and map phases, where map phase need to collect bocks and reduce phase

need to collect key groups. We outline our solution to develop map and reduce phases, by decrease preparation Maper and

Reducer, so we select locality base partitioning and developed to solve power loss by using node specification to decrease map

time, and key group robust to decrease reduce time.

Keywords: Hadoop, MapReduce, Big data, Cloud computing, Parallel computing.

1. Introduction

Over the years, a lot of online applications have led to

the production of a huge amount of data; a challenge

involves retrieving the information of these resources

with high performance. Hadoop [1] is one of open

source implementations, backed by yahoo, Facebook

and other famous company, has been widely employed

in academia and in industry, is highly fault tolerant and

has large throughput. MapReduce [2] framework has

had most popularity for its benefits and features such

as scalability, reliability, high throughput, analysis and

large computations on these massive amounts of data.

Fundamentally; a MapReduce has two primary phases

to execute a job, map and reduce phases. Actually, to

process big data sets need to increase utilization and

decrease power by cloud computing environments, and

need to divide the data into fixed size chunks which are

processed in parallel by MapReduce. Although

MapReduce succeeds; however, there are many

challenges such as data skew problem [3], interaction

fallen, reduce-phase skew problem [4]. And also the

performance and power implications of the integrated

environment are still not well investigated, so there are

a lot of researches on this popular model, to improve

its performance.

In this paper, we put our focus on the mechanism

before Map phase layer, and before Reduce phase layer

of each task in a job. Each job has three phases to

complete the process [5]. Namely, preparing phase,

running phase, finishing phase. Preparing phase reads a

collection of input data split from HDFS and generates

task tracker and job tracker to execute MapReduce

tasks, in running phase each job are waiting to be

scheduled for execution then take a time to execute

tasks, and the finishing phase cleanup task is scheduled

to a task tracker then the job becomes successful [6]. In

the first two phases there are many obstacles lead to a

reduction of efficiency. One of the reasons is data

partitioning[3], where they cause the content network

resource busy then job completion time will increase,

other reason a varying number of intermediate key

value pairs that assigned to reducer [4] , leads to skew

the load in Reduce phase . According to MapReduce

mechanism, data splitting controls the Map completion

time and key group controls running of the Reduce

task. There are several challenges that have to be well

studied to take advantage a MapReduce mechanism

with the best performance. We propose integrate the

two solutions with some modifications to solve a

wasting job time, and solve map skew and reduce

skew. The main contributions of our work are

summarized as follows. First, our theoretical analysis

shows that reduce the wasted time, and the node

hardware is a one of main attribute to run a job.

Second, using LDB method to improve map skew,

based on the basis of novel splitting mechanism to

address the remote read problem according to node

availability. Third, we integrate two compatible

methods to improvement MapReduce lifetime.

2. Related Work

Even though MapReduce framework has been the most

popular .However, the performance and power

implications of the integrated environment are still not

well investigated; therefore, there are many research

works on MapReduce. A lot of efforts have been made

to improve the performance of Hadoop at the level of

job scheduling or job parameter optimization.

2.1 MapReduce Framework

The International Arab Conference on Information Technology (ACIT’2015)

Figure 1 shows the work flow of a MapReduce

operation, a client posts jobs to the master node to

process files; it assigns JobTrackers to coordinate map

and reduce phases provide job progress information.

Over multiple slave nodes, JobTrackers are regrouping,

stored, and saved into information files. Both phases

have inputs and outputs, a key-value pair list, The

transactions are handled by a JobTracker daemon, that

runs the initial data partitioning and the intermediate

data combination, by posting tasks of type Map and

type Reduce over the TaskTracker daemons of the

nodes involved in the cluster, according to the data

being processed. The Reduce phase only starts when

on finishing the Map, caused after the Map the

resulting keys are combined, to distribute a sorted list

of key-value pairs between the Reducers, which can be

matched at the end of them. The process is

transactional, those map or reduce tasks are not

executed, (for data availability issues) will be

reattempted a number of times, and then redistributed

to other nodes [7].

After dividing file into M splits by districted file

system by HDFS [8] or Gfarm [9],[10]; fork many

copies of program on different machines. A master

machine assigns either map or reduce task to any idle

worker machine. Map worker read splits pass each pair

to user’s Map function, buffer result in memory. The

Map worker periodically writes buffered pairs to local

disk, partitioned into many of regions and updates

master with region locations and sizes; master

remembers these.

Figure 1 MapReduce Workflow

The reduce worker sends a remote procedure call to

the map workers to read pairs from map workers’

disks, and sorts pairs by intermediate key and group by

intermediate key, for each intermediate key, pass all

intermediate values to user’s Reduce function. When

all reduce tasks is finished Master node wakes up user

program.

2.2 Skew Problem

The skew problem is highly variable task runtimes in

MapReduce applications [11]. Runtime task

distributions from these applications demonstrate the

presence and negative impact of skew on performance

behavior. We introduce some works about avoiding

such behavior and their limitations.

Data Locality is one of critical impacts on data

parallel performance; therefore, many researchers have

been promoted to address this challenge [2] [3].

Streaming data [12] from multiple available replicas

have been proposed to improve the remote data

accessing performance. Locality Based Partitioning [3]

Strategy can cluster blocks co-located in the same node

into one partition, it releases data skew and improves

the MapReduce processing performance. Shuffle: The

procedure reduces fetching the immediate data from

each map task after launching is called copy phase, and

reduce sorting and merging the input date fetched from

map tasks is called merge phase. Usually, shuffle phase

means the whole procedure consisting of sort and

merge

The shuffle phase consists of sort phase and merge

phase. Whereas; reducer fetching the immediate data

from each map task after launching is called copy

phase. Reduce sorting and merging the input date

fetched from map tasks is called merge phase. It is one

of the reasons the performances problem, the shuffle

stage was the main cause of network traffic. Jingui Li

and etc. [13] developed the shuffle stage with more

efficient I/O policy; to decrease the whole job's

execution time and make full use of cluster

resources. Sketch-based data structure [4] proposed to

capture MapReduce key group size statistics and

present an optimal packing algorithm which assigns

the key groups to the reducers in a load balancing

manner.

2.3 Map Phase Improvements

After distributing files by HDFS or Gfarm or other

distributed file system, MapReduce is running

programs in parallel on top data splits. But, distributed

file system is designed to store data across many nodes

or servers for load balance. In practice, its balance is

not well for each file distribution [3] . Figure 2 shows,

distributed file effects.
Hash-base partitioning in Figure 2 (a), has sets of

disadvantages [3]

 May split block across nodes into the same partition,

which will cause non-local map tasks reading data

cross nodes/racks from network

 Increases the job own completion time

 Content network resource is busy

The International Arab Conference on Information Technology (ACIT’2015)

 Multiple jobs will interfere with each other for

sequenced jobs will be burdened by one job’s

improper partitioning

When map task reads data splits; which causes a lot of

TaskTrackers wasting time for initialization and

reallocate slots.

Many researchers improve the defects by their

technologies, Wang etc. [3] exploited data allocation

technologies to select best worker node and present

some research directions and challenges. Gu etc.[6]

Propose others technologies to optimize task execution

mechanism.

 Figure 2 Data Splitting Controls

2.4 Reducer Phase Improvements

Once the map phase is completed and its results have

been transferred to the reducers, the reduce phase

begins. In this phase, the reduce function is applied in

parallel to each key group and produces the final

results. Many works upgrade the reduce phase

performance by their methods. Streaming input data

from multiple replicas [12] one of improvement

methods to remote data access and accelerate the map

phase, a sketch-based compact data profiling [14] is

another method to solve the data skew problem in

record linkage. Yan etc. [4] introduce a novel sketch-

based data structure as a base method to improve

reduce lifetime.

3. IHadoop

3.1 Hadoop Background

In the MapReduce framework, to compute the job

execution performance, we need to compute Maper

workload and Reducer Workload. Maper Workload is

computed as sum of collecting time of all partitions to

Map task. Reducer workload is computed as a sum of

workload of all key groups assigned to Reducer task.

Based on the above and shown in Figure 3 Job life

time, the execution mechanisms of a MapReduce are

fully integrated between Map and Reduce tasks;

therefore, the two critical limitations in the standard

Hadoop MapReduce framework that effect execution

performance.

 In first limitation improve the splitting to decrease

initialization Map phase time

 In second limitation improve the splitting to

decrease initialization Reduce phase time

Figure 3 Job life time

3.2 Proposed System

We propose solutions depended on hardware

architecture Hadoop and improve both main tasks Map

and Reduce; we will be integrated locality base

Partitioning based on the cores of nodes mechanism as

interface to collect splits to increase Map task

initialization and solve LBP power loss, with an

The International Arab Conference on Information Technology (ACIT’2015)

interface to collect key groups and sort it to increase

Reduce task initialization. In this section, we introduce

the notation of locality base Partitioning based on the

cores of nodes, and present its construction, and

describe sorting key group packing interface.

As a first step we present an overview of our system

illustrating how our modifications work in MapReduce

framework. Show in Figure 4

Figure 4 illustrates the MapReduce processing

phases and sequences. Data partitioning is a step

processed before Map phase, then before starting

Maper we need to select available node depended on

node structure, Reducer will be started after the results

of Maper is available, key group collection is being

processed before reduce phase.

3.3 Locality base Partitioning based on the

cores of nodes

In this section, we describe our improving Local Base

Partitioning mechanism by detecting processors and

others hardware configuration in nodes to solve power

loss. LBP clusters data blocks co-located in the same

node, to address the problems of original splitting

method of Hadoop implementation and improve the

MapReduce performance [3], but it ignores power loss

or node architecture configuration.

There are two points have to be answered: which

node is available to work and which blocks and their

replicas are collected into the same partition. Wang

Answered the second part by designing LBP system,

we have benefited from his answer and add an answer

to the first part.

The JobTracker will be consulted for corresponding

nodes utilization to decide which node replica we

choose and which node is available. The detail steps of

Locality Based Partition based on Hardware are

described in Algorithm 1. SplitList is an array list

whose each array contains the blocks of the same

partition, and there are SplitMemNum arrays in this list

(Step 4). In step 6 we choose the proper replica for

every block which we will describe the detailed steps

of this in next subsection. Then we cluster the replicas

into partitions based on its locality and number of

processor in the node (step 8- step 16).

 Splitting Numbers

 Replica Selection

 Processor utilization

3.4 Sorting key group packing interface

In this section, we introduce the notion of sketch-based

key group size [4] into the MapReduce framework and

a distributed method for its construction. Yan and Xue

[4] investigate the design of the partition function,

which maps the intermediate key to a reducer index,

based on the key group size information as a summary

in the global sketch.

In the Algorithm 2 K be the key space and R be the

number of reducers. A partition function Φ:K→{1, 2,

…..,R} maps key k to the index of the desired reducer r

= Φ(k) ∈ {1, 2, ...,R}. We assume the reducer load is

proportional to its input key group sizes. As such, the

load at reducer r can easily be derived as 𝑆𝑘:𝛷(𝑘)=𝑟k,

where Sk is the size of key group k. The targets of this

method are the load balance at different reducers, and

minimize the task time by 30% as a minimum.

4. Conclusion and future work

Despite its popularity deployed, Hadoop also have

some problems that have to be studied and addressed.

In this paper, we analyze the disadvantages of existing

splitting mechanisms, losing time before reducer task.

We have benefited from previous studies to develop

and integrate them to decrease from 30% to 60 on

completion time of jobs. Future Works in this paper,

we are developing the idea by the following steps;

implement and applying the idea, developing its parts

to be smarter

References

[1] Welcome to Apache™ Hadoop®! [Online].

http://hadoop.apache.org

[2] Sanjay Ghemawat Jeffrey Dean, "MapReduce:

Simplified Data Processing on Large Clusters,"

vol. 51, 2008.

[3] Qingbo Wu, Yusong Tan, Wenzhu Wang,

Quanyuan Wu Chunguang Wang, "Locality

Based Data Partitioning in MapReduce," IEEE

16th International Conference on Computational

Science and Engineering, 2013.

[4] Yuan Xue, Bradley Malin Wei Yan, "Scalable

and Robust Key Group Size Estimation For

Reducer Load Balancing in MapReduce," IEEE

International Conference on Big Data, 2013.

[5] Hadoop Internals. [Online].

http://hadoop.apache.org/

The International Arab Conference on Information Technology (ACIT’2015)

http://ercoppa.github.io/HadoopInternals/Anatom

yMapReduceJob.html

[6] Xiaoliang Yang, Jinshuang Yan, Yuanhao Sun,

Bing Wang,Chunfeng Yuan, Yihua Huang Rong

Gu, "SHadoop: Improving MapReduce

performance by optimizing job execution

mechanism in Hadoop clusters," Journal of

Parallel and Distributed Computing, vol. 74, no.

3, 2014.

[7] Platform base: HDFS + MR. [Online].

http://hadooper.blogspot.com/

[8] Tom White, Hadoop: The Definitive Guide.:

O’Reilly Media, 2011.

[9] Osamu Tatebe. (2013) Gfarm: Present Status and

Future Evolution.

[10] Gfarm Document. [Online].

http://datafarm.apgrid.org/

[11] Magdalena Balazinska, Bill Howe,Jerome Rolia

YongChul Kwon, "A Study of Skew in

MapReduce Applications," Open Cirrus Summit ,

2011.

[12] Bo Hong Jiadong Wu, "Improving MapReduce

Performance by Streaming Input Data From

Multiple Replicas," IEEE International

Conference on Cloud Computing Technology and

Science, 2013.

[13] Xuelian Lin, Xiaolong Cui, Yue Ye Jingui Li,

"Improving the Shuffle of Hadoop MapReduce,"

IEEE International Conference on Cloud

Computing Technology and Science, 2013.

[14] Wei Yan, Yuan Xue, and Bradley Malin,

Scalable Load Balancing for MapReduce-based

Record Linkage.

[15] Apache Hadoop , Wikipedia. [Online].

http://en.wikipedia.org/wiki/Apache_Hadoop

[16] PoweredBy - Hadoop Wiki. [Online].

http://wiki.apache.org/hadoop/PoweredBy

[17] Gfarm file system - Wiki. [Online].

http://en.wikipedia.org/wiki/Gfarm_file_system

[18] Hadoop. [Online].

http://hadoop.apache.org/docs/r1.2.1/hdfs_design

.html

http://ercoppa.github.io/HadoopInternals/AnatomyMapReduceJob.html
http://ercoppa.github.io/HadoopInternals/AnatomyMapReduceJob.html
http://hadooper.blogspot.com/
http://datafarm.apgrid.org/
http://en.wikipedia.org/wiki/Apache_Hadoop
http://wiki.apache.org/hadoop/PoweredBy
http://en.wikipedia.org/wiki/Gfarm_file_system
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

