
Constraints Aware and User Friendly Exam

Scheduling System

Mohammad Al-Haj Hassan

Computer Science Department

Zarqa University

Amman, Jordan

mhajhasan@zu.edu.jo

Osama Al-Haj Hassan

Computer Science Department

Isra University

Amman, Jordan

osama.haj@iu.edu.jo

Abstract: Scheduling is a crucial task for schools, universities, and industries. It is a vital task for any system containing

utilization of resources to fulfill a certain criterion. Utilization of such resources usually includes several conflicting

constraints that scheduling has to take into account. Exam Scheduling is an essential key for schools and universities in order

for exams periods to be smooth. In this paper, we present an exam scheduling system that employs graph coloring scheduling

technique. We focus on two aspects. First, the constraints our system handles. Second, the user friendly interface of the system.

Keywords: Exam Scheduling, user friendly, constraints, optimization, conflict, graph coloring

1. Introduction

Scheduling is needed in various aspects of life such as

reservations, project scheduling, timetabling, workforce

scheduling, appointments, transportation scheduling,

and scheduling in entertainment [10]. It is also a

necessity in schools and universities in order to generate

exam schedules [2].

The process of generating exam schedules is not a

straight forward one. There are many constraints that

should be taken into consideration such as available

instructors in a time period, available halls and labs,

number of concurrent exams. In fact, finding the optimal

exam schedule that satisfies given constraints is

considered NP-Hard problem [3].

There are many well known scheduling techniques such

as graph coloring [12][8], fuzzy logic [2], simulated

annealing [5], particle swarm [6], genetic algorithms [4],

memetic algorithms[7], and ant colony [14]. The one we

use in our system is a graph coloring scheduling

algorithm which we already proposed in a previous

work [8].

The contribution of this paper is to design exam

scheduling system that embodies the following. First,

our exam scheduling system covers as many constraints

as possible which makes our system generate accurate

exam schedules. Second, the design of our system is

user friendly which makes it easy to understand and use

by non tech savvy people.

The rest of the paper is organized as follows. First, in

Section 2 we discuss related work in scheduling

research area. After that, in Section 3 we comprehend on

the various constraints we take into consideration in the

exam scheduling process. Next to that, in Section 4 we

discuss the graph coloring algorithm we use in our

system. Consequent to that, we propose in Section 5 the

requirements of scheduling exams in real world

scenarios. Following that, we present our design for the

exam scheduling system in Section 6. Then, we

conclude our work in Section 7.

2. Literature Review

Exam scheduling is a form of time tabling problem and

it has been studied extensively in literature. In [12],

authors use the widely known Recursive Largest First

(RLF) algorithm to color a graph that represents

different sections in Sokoine University of Agriculture.

The work in [6] presents a survey of different particle

swarm techniques for solving exam scheduling problem.

Authors in [4] use a genetic algorithm to generate exam

schedules. They consider a two dimensional

chromosome consisting of days as one dimension and

exams as another dimension. The genetic algorithm they

use relies on mutation operator and excludes crossover

operator. The work in [14] uses an ant colony approach

to generate exam schedules. The approach relies on

constructing an initial solution comprising days, rooms,

slots, and exams. Then, exams schedule is developed by

tracking pheromone of ants trying to make a tour to find

optimal exam schedules. In [13], a schedule is generated

by searching among heuristics and this is achieved by

using iterative local search and a set of move operators

that tend to improve the quality of the outcome

schedule. A survey of different exam scheduling

techniques can be found in [1] and [9]. A clonal

selection algorithm that produces exam schedules is

proposed in [14], where in this work, a set of solutions

(antibodies) are developed and the affinity (fitness) of

those solutions are calculated based on a fitness

function. After that, the fittest antibodies are chosen to

be cloned with a certain degree of mutation in order to

find better solutions. Authors in [11] discuss a honey-

bee mating optimization algorithm which is used to find

near optimal exam schedules. The algorithm relies on

queen (current best solution), drones (trial solutions),

workers (heuristics), and brood (new solutions). The

algorithm first generates a pool of solutions where the

best one is chosen as the queen and the others are

considered drones. Drones (trial solutions) mate with the

queen (current best solution) using crossover and that

generates new solutions.

3. Exam Scheduling Variables and

Constraints

Our system takes into consideration several variables

and constraints. This is of utmost importance so that the

generated schedule meets the operation of real world

scenarios. The following is a list of those variables and

constraints:

* Count of Days: The count of days allowed for exam

scheduling. This can be a specific number or it can be

open such that our system uses the minimum number of

days needed to generate a schedule.

* Count of time slots: The count of time slots during

which exams can be scheduled.

* Type of exam: The type of exam such as first, second,

mid, or final exams.

* Concurrent Exams: A student cannot have more than

one exam in the same time slot of a given day.

* Count of exams for students: The maximum count of

exams held in the same day for one student.

* Exam Position: Indicates whether the system has to

schedule exams using predefined day and time rules or

the system has the freedom to schedule the exam in any

day and time slot.

* Conflicts: Sometimes when a fixed number of days is

specified, conflicts may arise such as count of exams in

one day for a given student exceeds the allowed limit.

So, this parameter indicates if a conflict is

allowed. If conflicts are not allowed (Hard Constraint),

then few exams may remain unscheduled.

* Exams per time slot: The maximum number of

exams that can be scheduled in a given time slot.

* Monitoring Tasks: The maximum count of

monitoring tasks that can be assigned to an instructor.

* Concurrent Monitoring: An instructor cannot have

two simultaneous monitoring tasks.

* Concurrent class with monitoring: An instructor

cannot have a monitoring task at the same time of his a

class he or she teaches.

* Concurrent class with Student Exam: A student

cannot have an exam at the same day and time of a class

he attends unless the exam pertains to that particular

class.

* Concurrent Exams: An instructor cannot have two

simultaneous exams. The same constraint applies for

students.

It is worth mentioning that most of the above constraints

are parametric. Only constraints that constitute

predefined conditions will be imposed on our system

rather than considering them parameters.

4. Exam Scheduling using Graph Coloring

Our exam scheduling system is based on our work in [8]

wherein a novel technique for exam scheduling using

graph coloring is proposed. In that work, we represented

exam scheduling problem as an undirected weighted

graph G that is an ordered pairs (V, E, W) where V is

graph nodes, E are edges between nodes, and W is a

weight function that gives weight to edges. Here, a node

corresponds to a section of a course and an edge

between two nodes, together with its weight, pertains to

number of common students between the two sections.

Adjacent nodes are sections that share an edge with

weight (number of common students) greater than zero.

Example of an exam scheduling problem represented in

a weighted undirected graph is shown in Figure 1.

Figure 1: sections represented as a graph

S1

S2

S4

S5

S3 S6
3

4
2

3 S7

5

4

6

S7 S6 S5 S4 S3 S2 S1

0 0 0 0 4 2 0 S1

0 0 3 0 0 0 2 S2

0 0 0 3 0 0 4 S3

4 5 0 0 3 0 0 S4

6 0 0 0 0 3 0 S5

0 0 0 5 0 0 0 S6

0 0 6 4 0 0 0 S7

Figure 2: adjacency matrix of graph in Figure 1

S7 S6 S5 S4 S3 S2 S1

2 1 2 3 2 2 2 Degree

10 5 9 12 7 5 6 Weight

Figure 3: degrees and weights of sections in Figure 1

Colors indicate available time slots in a given day. A

color has concurrency limit which represents the number

of exams that can concurrently be held at that time slot.

This is usually controlled by the number of available

halls/labs in that time slot. For example an instance of a

color is time slot "09-10" and concurrency limit for this

color is 5 meaning that there are 5 available halls/labs in

time slot "09-10". The graph coloring problem is

concerned with coloring graph G such that no two

adjacent nodes have the same color. This is logical

because adjacent nodes have students in common, and

therefore, cannot be scheduled in the same day and time

slot. The graph coloring algorithm starts by building

adjacency matrix of sections (Figure 2). An entry in the

adjacency matrix corresponds to count of common

students between the two sections. Each section has a

degree and a weight values. A degree of a section "S"

refers to the count of sections with which the a section

"S" shares edges. A weight of a section "S" is the

summation of weight values on the edges "S" shares

with other sections. Figure 3 shows corresponding

degrees and weights for the sections in Figure 1. The

next step is to order sections list "secList" in descending

order based on degree which is shown in Figure 4. Now,

some sections might share the same degree, therefore we

order them in descending order based on their weight as

illustrated in Figure 5. After that we iterate over each

section "S" in the ordered list such that the following

steps are executed for each section:

* Find the first day and slot that does not violate the

constraints listed in Section 3. Assign that time slot to

the section "S"

* Find the adjacency list "adjS" of the section "S"

* Order the sections of "adjS" based on the same degree

and weight ordering explained previously.

* For each section "S2" in "adjS", find the first day and

slot that does not violate constraints listed in Section 3.

Assign that time slot to the section "S2".

The aforementioned algorithm is shown in Figure 6.

S6 S7 S5 S3 S2 S1 S4

1 2 2 2 2 2 3 Degree

5 10 9 7 5 6 12 Weight

Figure 4: sections of Figure 3 ordered based on degree

S6 S2 S1 S3 S5 S7 S4

1 2 2 2 2 2 3 Degree

5 5 6 7 9 10 12 Weight

Figure 5: sections with the same degree ordered based on weights

5. Real World Scenario Requirements

In this section, we take the graph coloring algorithm

mentioned in [8] as a base for our system that takes into

consideration real world scenarios. In the original

algorithm, conflicts are not allowed. However, in real

world scenario, the school/university may force a

requirement for the count of days in the schedule. In this

case, conflicts may occur such as a student having count

of exams in a given day greater than the allowed

number. In original algorithm, the type of exam is really

a general concept. In real world scenario, there are

specifics that may differ according to type of exam. For

example, during first, second, and mid exams,

scheduling an exam during the same day and time slot in

which the section is taught is considered normal. This is

not normally true for final exams where fixed time

periods are available and no classes are held. Another

example is related to hall availability. In final exams all

halls are available while in first, second, and mid exams

some halls are already occupied with classes. In the

original algorithm, the concurrency limit is a general

concept which means the count of exams that can be

held in a given day and slot. This is normally translated

to the count of available halls in that day and time slot.

However, in real scenarios we might consider a case

where multiple exams can be held in the same hall; and

this redefines the concurrency limit definition. In our

original work, we have not discussed any constraints

related to assigning exam monitoring tasks for

instructors. This is definitely a needed issue in real

world scenarios. In the original work all sections are

considered unique entities. However, in real scenarios

we have "Shared Sections" which arise because of

changes on degree requirements. When a major change

occurs to degree requirements, this change has to be

applied on new students. But, it cannot be applied on

previous students who are committed to the previous

degree plan. This results in having two or more sections

that are assigned different course number and/or

different section number because they belong to

different degree plans. However, those sections are

really the same unique section. So, for exam scheduling

purposes, those sections have to be treated as one. One

point to mention is that in real world scenarios, an

instructor might request that his exam be held in a lab

instead of a theory hall. This is not mentioned in our

original work.

6. Exam Scheduling System Design

In this section, we shed light on the design and features

of our system. Our system is developed using Java. It

interacts with a MySQL database which stores

information of sections being taught in a given semester.

The database contains the following tables:

* Course: represents courses to which sections belong

* Section: represents sections of courses

* Instructor: represents teachers of sections

* Student: represents students who register sections

* Hall: represents halls and labs

When the user runs the system, data is loaded from

database. The main window has several menus and it

looks like Figure 7.

First, "Settings" menu enables user to control several

parameters in the scheduling process. One of the menu

items in the settings menu is "Parameters" which opens

the window illustrated in Figure 8. It allows the user to

enter maximum number of days allowed for schedule,

maximum number of exams that can be held in a given

Figure 7: scheduling system main window

time slot, maximum number of exams for a student in

one day, and maximum number of monitoring tasks

permissible for an instructor. The user can also select

whether the desired schedule is with minimum number

of days such that it contains no conflicts or is strict to

the entered maximum number of days regardless of

having conflicts. Also, the user can choose if all sections

of a given course are to be scheduled in the same time

slot or each section is scheduled on its own slot. In

addition, the user can determine the type of exam such

as first, second, mid, or final exam. Finally, scheduling

can occur based on fixed rules coming from the

registration department. These rules come in the form

"A section that is taught on a given day and time would

be scheduled in a given day and time". On the contrary,

the user can choose "dynamic" scheduling that uses the

graph coloring algorithm explained in this paper to

generate a schedule with fewest conflicts. The second

Construct Adjacency Matrix of sections in the section list "secList"
Order sections of "secList" in descending order based on degree
For sections in "secList" with the same degree
order them in descending order based on weight
End For
For each section "S" in the ordered list "secList"
Assign to "S" the first day and time slot such that constraints are not violated
Retrieve "adjS" which is the adjacency list of "S"
Order sections of "adjS" in descending order based on degree
For sections of "adjS" with the same degree
order them in descending order based on weight
End For
For each section "S2" in "adjS"
Assign to "S2" the first day and time slot such that constraints are not violated
End For
End For

Figure 6: the graph coloring algorithm

Figure 8: parameters window

option in settings menu is "Schedule Days". Here, the

user can choose the exact dates of schedule days. This

can be done by selecting the date of the first day from a

calendar and then clicking "Change Dates" which

changes the dates of the remaining days accordingly. In

addition, the user can use a calendar beside each day to

change the date of that day. This is shown in Figure 9.

After the user finishes choosing settings, he or she can

go through the process of electronic exams using the

menu "Electronic Exams". Clicking on the single option

available in that menu causes the window in Figure 10

to show up. This window contains two lists. The list on

the left contains sections that are originally taught in a

hall. The list on the right contains sections that are

originally taught in a lab. The user can use the two

buttons to move sections between the two lists. This is

handy in case we need to schedule an exam in a lab

when it is originally taught in a hall and vice versa. The

user can also manually schedule sections. This can

happen when for example an instructor of a given

section presents a special request to schedule one of his

exams in a given day and time due to personal or urgent

circumstances. This can be done by using "Manual

Scheduling" menu which shows the window in Figure

11. The window contains two lists. The list to the left

contains unscheduled sections and the list to the right

contains scheduled sections. The second list is usually

empty unless sections are manually scheduled which

causes them to move to the list on the right. To

manually schedule a section, the user selects it from list

to the left and clicks on the button with right arrow. This

opens a window showing schedule days, time slots, and

available halls/labs in that day/slot. The user chooses the

desired parameters and clicks "OK". This causes the

Figure 9: days control window

section to be manually scheduled and it will be

transferred to the menu on the right. If a scheduled

section on the right list should be moved back to the

unscheduled sections list, the section can be selected and

the button with left arrow is clicked. After settings are

selected, electronic exams are chosen, manual

scheduling is performed. The user is now ready to

generate a new schedule using "Schedule" menu. The

first option in this menu is "Generate New Schedule".

Clicking this option causes the scheduling algorithm to

run. The algorithm will take into consideration the

settings, electronic exams, and manual scheduling

previously chosen and then a new schedule is generated.

One piece of information that the system provides is the

count of students having one, two, and three exams per

each day. This gives an indication about quality of

generated schedule since students having three exams in

one day is normally not allowed and students having

two exams in the same day should be kept as minimum

as possible. But cases like that can happen if the user

selected the settings that force the system to work within

very few days which causes three exams issue to arise.

In this case, students usually request deferring one of the

three exams. This piece of information also gives an

indication of how busy a building where exams is held

during a given day. The second option in "Schedule"

Figure 10: electronic exams and paper exams

Figure 11: manual scheduling

Figure 12: example of stored schedule

menu is "Store Schedule as HTML File" which causes

generated schedule to be stored in a readable user

friendly way. An example of a stored schedule is

illustrated in Figures 12. It is clear that Figure 12

contains just a part of the lengthy schedule as a sample.

The previous description shows the details of our

scheduling system and the steps the user undertakes in

order to generate a new schedule. We showed the

aspects related to offering a flexible easy to follow and

user friendly exam generation process.

7. Conclusion
In this paper a new exam scheduling system is proposed.

The system covers several key constraints related to

schedule days, schedule time slots, conflicts, students,

and instructors. The system design is user friendly

which allows users to generate a schedule in a flexible

and easy process. Our system utilizes a graph coloring

scheduling algorithm which provided a strong base for

generating satisfactory exam schedules.

References

[1] Babaei H., Karimpour J., and Hadidi A., "A survey

of approaches for university course timetabling

problem", Journal of Computers & Industrial

Engineering, vol 86, pp. 43 - 59, 2015.

[2] Cavdur F., and Kose M., "A Fuzzy Logic and

Binary-Goal Programming-Based Approach for Solving

the Exam Timetabling Problem to Create a Balanced-

Exam Schedule", International Journal of Fuzzy

Systems. pp. 1-11, 2015.

[3] Gonsalves T. and Oishi R., "Artificial Immune

Algorithm for exams timetable", Journal of Information

Sciences and Computing Technologies. vol. 4, no. 2, pp.

287-296, 2015.

[4] Hosny M. and Al-Olayan M., "A mutation-based

genetic algorithm for room and proctor assignment in

examination scheduling", Science and Information

Conference (SAI), pp. 260-268, 2014.

[5] Kalender M., Kheiri A., and, Ender Ã., and Burke

E., "A greedy gradient-simulated annealing selection

hyper-heuristic", Journal of Soft Computing. vol. 17, no.

12, pp. 2279-2292, 2013.

[6] Larabi S., Sainte M., "A survey of Particle Swarm

Optimization techniques for solving university

Examination Timetabling Problem", Artificial

Intelligence Review, pp. 1-10, 2015.

[7] Lei Y., Gong M., Jiao L. and Zuo Y., "A memetic

algorithm based on hyper-heuristics for examination

timetabling problems". International Journal of

Intelligent Computing and Cybernetics, vol. 8, no. 2, pp.

139-151, 2015.

[8] Malkawi M., Al-Haj Hassan M., and Al-Haj Hassan

O., "A New Exam Scheduling Algorithm Using Graph

Coloring", International Arab Journal of

Information Technology. vol. 5, no. 1, pp. 80-86, 2008.

[9] Pillay N., "A survey of school timetabling research",

Annals of Operations Research, vol. 218, no. 1, pp. 261-

293, 2014.

[10] Pinedo M., Zacharias C., and Zhu N., "Scheduling

in the service industries: An overview", Journal of

Systems Science and Systems Engineering, vol. 24, no.

1, pp. 1-48, 2015.

[11] Sabar N. R., Ayob M., and Kendall G., "Solving

examination timetabling problems using honey-bee

mating optimization (ETP-HBMO)", Multidisciplinary

International Conference on Scheduling: Theory and

Applications (MISTA), Dublin, Ireland. 2009.

[12] Selemani M. A., Mujuni E., and Mushi A., "An

examination scheduling algorithm using graph

colouring—the case of Sokoine University of

Agriculture", International Journal of Computer

Engineering & Applications, vol. 2, no. 1, pp. 116-127,

2013.

[13] Soria-Alcaraz, J. A., Ochoa G., Swan J., Carpio M.,

Puga H., and Burke E. K., "Effective learning hyper-

heuristics for the course timetabling problem",

European Journal of Operational Research, vol. 238,

no. 1, pp. 77 - 86, 2014.

[14] Thepphakorn T., Pongcharoen P., and Hicks C.,

"An ant colony based timetabling tool", International

Journal of Production Economics, vol. 149, pp 131 -

144, 2014.

