
Integrated Replication-Checkpoint Fault Tolerance

Approach of mobile agents “IRCFT”

Suzanne Youcef Sweiti and Amal Moh'd Al. Dweik

College of Information Technology and Computer Engineering

Palestine Polytechnic University

Hebron, Palestine

suzans@ppu.edu amal@ppu.edu

Abstract: Mobile agents offer flexibility which is evident in distributed computing environments. However, agent systems are

subject to failures that result from bad communication, breakdown of agent server, security attacks, lack of system resources,

congestion in network, and situations of deadlock.

If any of such things happen, mobile agents suffer loss or damage totally or partially while execution is being carried out.

Reliability must be addressed by the mobile agent technology paradigm. This paper introduces a novel fault tolerance

approach “IRCFT” to detect agent failures as well as to recover services in mobile agent systems. Our approach makes use of

checkpointing and replication where different agents cooperate to detect agent failures. We described the design of our

approach, and different failure scenarios and their corresponding recovery procedures are discussed.

Keywords: Mobile agents, fault tolerance, reliability, checkpointing, replication.

1. Introduction

In the both the academic and industrial trends, mobile

agents are very important in the recent trends of

distributed computing. They have their own properties

which make them flexible in the deployment. As a

result, the design, application and maintenance of the

distributed systems become a simple task [1,2].

Like any other software systems, mobile agents are not

isolated from operating in unusual situations. They are

somewhat subject to fault as they consist of

autonomous components in distributed dynamic

environments [3]. Mobile agents might come across

usual errors which emerge especially during migration

request failure, security penetration or communication

exceptions [4]. The issue of reliability is extremely

important in order to challenge such failures. The goal

is to allow the system to work flexibly in spite of the

faults which continue to exist in the system after

development [2].

The most important requirements among the

approaches to handle the fault tolerance in mobile

agent system (MAS) are: non-blocking and exactly-

once [5].

The non-blocking property guarantees that the agent

continues executing to achieve its goal even in case of

an infrastructure component.

The use of replication may cause the violating of the

dominant property of the mobile agent: the exactly

once execution of the mobile agent [5]. The objective

of the protocols for dealing with the exactly-once

property is to ensure that the agent has to carry out the

intended action one time only in a host.

The remainder of this paper is organized as follows:

the next section introduces the previous work. Section

3 defines our model while section 4 introduces the

different failure scenarios and their corresponding

recovery procedures. Implementation is introduced in

section 5. Finally, the conclusion is introduced in

section 6 followed by the references.

2. Related Work

In this section, some existing fault tolerance

approaches are briefly discussed.

In [6], the authors have proposed an approach for

providing efficient fault tolerance in mobile agent

systems to overcome certain failures. Here, the parallel

checkpointing approach is used which considers the

antecedence graphs. The used graphs are directed

acyclic graphs that record the dependency information.

The identifying time is minimized and time latency is

decreased for global checkpointing procedure, as

during the beginning the relevant mobile agent is being

informed by the initiator simultaneously. In this

technique [6], the identifying, execution and recovery

time is improved and the message overhead can be

reduced. On the other hand, there is an overhead of

taking message log and antecedence graph of each

message.

mailto:suzans@ppu.edu
mailto:amal@ppu.edu

The authors of [7] have proposed an approach to sort

out the agent crash problem. Here the clone of original

agent is created. This clone is used in an itinerary to

follow the actual agent. So, if any failure occurs in the

mobile agent system, the recovery is possible by the

clone. The main aim is to limit the rollback by adding

checkpoints. The performance can be improved by

total trip time, checkpoint time and successful

migration time. However, it may sometimes violate the

exactly once property of mobile agents.

In [8], authors introduce that the server and agent

failures are detected and recovered by the cooperation

of agents with each other. In order to detect and

recover the failed agent in 2-Dimensional Mesh

Network , another types of agent are used, namely the

witness agent, to monitor whether the actual agent is

alive or dead. It prevents a partial or complete loss of

mobile agent. In this approach the use of 2-D mesh

network, dependencies among witness agent get

reduced as compare to linear network and the

drawback is that the existing procedure consumes a lot

of resources along the itinerary of the actual agent as

the itinerary becomes longer, more witness agents and

probes are necessary, so system complexity increases.

In [9], the idea of agent tracking technique is

described. It provides an efficient system so that

excellent management and maintenance can be

performed in the networks of the systems of mobile

agents. This technique is claimed to be beneficial in

Maintenance and Efficiency which are attained

through robust tracking techniques. The drawback of

this approach is that it doesn't comprise replication and

techniques for timely fault detection. These properties

promote the robustness and flexibility in the system.

In [10], the fault tolerant mechanism has been laid

with relation to the applications that deal with

transactions. The protocol proposed is based on the

behavior of mobile agent, Watch Agent as well as

Transaction Manager. When commit at destination

protocol is applied, the property of exactly-once

execution is not violated.

The designing of adaptive mobile agents in [11] aims

at accepting additional roles when working inside a

special environment that is called context-aware

environment. The merit of the technique is that the

mobile agents are already inside the system. So, there

is no need for any kind of external communication.

This means that the time to make and send a new

mobile agent is saved and time for response becomes

shorter.

In [12], an integrated mechanism has been proposed

using SMAPS (Secure Mobile Agent Platform System)

which aims to prevent agent blocking in certain cases

where agent is identified by malicious host. When

executing transactions, the partial result retrieval is

taken into account. This is then used to follow the

location of the mobile agents during the process at any

time. The technique in [13] is helpful in improving the

reliability and performance through parameters like

communication overhead, size of the message and fault

tolerance time. This technique's shortcoming is that is

suitable merely for time sensitive applications.

In [13], the agent put its computation results on the

home server after completing its task on first three

servers in its itinerary. The approach makes use of

check pointing, partial results and the address of last

host visited is saved prior before the agent visits the

next host in the itinerary. If agent stops its execution

due to any fault on the server and unable to move in its

itinerary, agent sends a message to home server, which

then sends the replicated copy of the original agent to

the immediate checkpoint before the faulty server. The

authors measure the performance of the approach. The

analysis of this technique show a good result by

improving the round trip time of the agent, since after

occurrence of fault, the replicated agent need not roll

back to the first server as it starts moving from the

checkpoint immediately before the faulty server.

Whenever an agent does not reaches the desired server

due to network congestion the host assumes it to be

failed and it sends a replicated copy of it means while

the original agent also reaches the destination which

could lead to violation of exactly once property.

In [14], the authors raised another Fault-Tolerant

model based on Witness. This model employs three

types of agents. They are actual agent which performs

programs for its owner, witness agent which monitors

the actual agent and the witness agent after itself,

probe which is sent for recovery the actual agent or the

witness agent on the side of the witness agent. The

older witness agents are responsible for monitoring the

witness agent that is just one server closer to the actual

agent in its itinerary. Communication mechanism is

message passing between these agents. Discovery of

failure is done by witness agent and recovery is

message log based recovery and also checkpointing.

The improvement in agent survivability is achieved by

spending more time and space resource's, more witness

agents and probes are necessary, so system complexity

increases.

3. Integrated Replication-Checkpoint Fault

Tolerance Approach (IRCFT)

The IRCFT approach is a development of that

implemented in [13] and [14]. It provides the

availability of recovery mechanism in the suggested

approach, the execution proceeds after the crash of the

agent or crash of the host smoothly and correctly. The

basic idea used in the work is to tolerate faults using

the concept of checkpoint and replication. For our

work we will make the following enhancements:

- The key difference between the protocol suggested

in [14] and our protocol is that: the former depends on

a reliable network, while we allow the network to be

unreliable. Therefore, we can handle the failures in

transmission of messages as well as the loss of the

agent in the network.

- Compared with work [14] our approach depends on

using fewer monitors to monitor the worker agent

during work. Connection is performed between four

monitors maximum in each stage to detect the error

when it occurs in the worker agent. So the previous

monitors are killed after doing the checkpoint in the

home server.

- Our approach provides the availability of recovery

mechanism in the suggested approaches, the execution

proceeds after the crash of the agent or crash of the

server smoothly and correctly.

3.1. Assumptions

Some specific assumptions in the system may be

summarized in the following points:

1. Agents in the system can be generated from every

node on network. Thus, each node on network

provides the mobile agents an execution

environment to accomplish its tasks.

2. There is no implementation of platform crash or

platform failure. However, the crash of the server,

is treated somehow by treating it as crash of the

agents they are hosting.

3. The home server is always available.

4. There is no case where all servers are down at the

same time.

5. No hardware failure in log message, such that

cannot be recorded in the permanent storage.

3.2. IRCFT Description

In our approach, we distinguish five types of agents,

one type is performing the required computation for

the user. We name it the worker agent (WA). WA play

an active role in this protocol. Another type is to detect

the status of the actual agent. We call it the monitor

agent (MA). Manager Agent that send the address of

the next server to the WA, and the fourth type is the

replica to recover the WA. MA and WA communicate

by using a peer-to-peer messages passing mechanism.

MA sets a timer with a certain time-out value for each

server Si. It creates Repair agent (RA) in some case of

monitor failure. Replica is used to protect the WA. We

also need to log the actions performed by the WA. We

use checkpoint data to recover the lost agent, and save

partial results before the agent visits the next server in

the itinerary.

At first, the Manager agent create WA and MA and

they migrate to the next server Figure 1 illustrates the

workflow of the protocol.

Suppose that, currently there are n network nodes on

the execution itinerary, and the WA does not reach the

fourth server yet, WA and MA are at server Si+1.

1- After WA has arrived at Si+1, it immediately

registers a logarrive on the permanent storage in Si+1.

2- Afterwards, WAi+1 informs MAi+1 that it has arrived

at Si+1 safely by sending a msgarrive message to MAi+1.

3- MAi+1 informs MAi that WAi+1 has arrived at Si+1

safely by sending a msgarrive message to MAi.

4- Next, WAi+1 accomplishes the task appointed by the

owner on Si+1.

5- WAi+1 takes a checkpoint to a secondary storage in

the resident server in timeout period (tck).

6- WAi+1 sends message checkpoint_msg to MAi+1. If

the checkpointing action fails, the worker agent will

abort the whole transaction.

7- WAi+1 sends its current address to the Manager

agent and waits for a response for address of the next

server. If not response resends the message.

8- Manager agent sends address of next server if the

current address is not in the list of the precedent

address visited.

9- WAi+1 registers a logleave in Si+1.

10- Next, WAi+1 sends to MAi+1 a message, msgleave, in

order to inform MAi+1 that WAi+1 is ready to leave Si+1.

11- MAi+1 sends message msgleave to MAi.

12- MAi+1 creates a new monitor in Si+1.

13- WAi+1 and the new monitor leave Si+1, and

migrates to Si+2.

14- MAi+1 creates a new replica agent RcAi+1.

15- RcAi+1 go to the checkpoint and change it status.

16- RcAi+1 sends an update message to the previous

replicas and waits for reception of acknowledge (ack)

message from the other replicas.

After completing its execution on the first three servers

of the itinerary the worker move to Si+2 and repeats the

following stapes 1-4 and 7-11 above motioned.

When WAi+2 sends the logleave to MAi+2, then:

17- WAi+2 move back to the home server and

checkpoint the data and save the values computed from

the previous three servers.

18- Once the WA completes checkpoint in the fourth

server the replicas and monitors are killed since it is no

longer needed.

19- After saving the value and adding checkpoints the

Manager Agent creates a new monitor. WAi+2 and the

new monitor move to the next server in the itinerary

that is Si+3 and repeat the same process for every four

servers in the itinerary.

- A chain of monitors is built in the itinerary MAi-1 

MAi  MAi+1. The monitor MAi sends a message to

monitor MAi-1 periodicaly. Similarly, the monitor

MAi+1 sends a message to the last minitor MAi.

Finally, the WAn completes its itinerary and

accomplishes its objectives, it returns back to the home

server.

Figure 1. Workflow of IRCFT protocol.

3.3. Preserving exactly-once property

Exactly-once property must be preserved in the

proposed approach. Because it is impossible for more

than one worker to gain the accept from the Manager

agent for the same stage, and it never receive the next

server. In this case the duplicate agent will be

terminate.

3.4. Management of monitors

In [14], monitor will be recreated when it is failed.

This introduces a high overhead in the computation

power when there is a host with a high crash rate. In

this approach, the monitors will not be recreated but

reconnection is used to maintain the chains of

monitors. Besides the lower consumption of power, it

can eliminate the “bad hosts” from the chain.

4. Failure Scenerios

In following subsections, we will cover different kinds

of failures including the loss of the WA. We proposed

several scenarios as follows.

4.1. In the first three servers

Figure 2 illustrates the whole execution life cycle in

the first three servers and the arrow means where the

failure occurs. The current host is Si+1.

Figure 2. Different scenarios of failure in the first three servers.

4.1.1. Safe case

The MAi successfully receive msgarrive and msgleave

from MAi+1 and the worker agent successfully

completes execution on Si+1 and moves safely to the
next server Si+2. The algorithm of the safe case is

shown in Figure 3.

Figure 3. Algorithm of the safe case.

4.1.2.The monitor MAi+1 fails to receive msgarrive

Case 1 and 2 : The reason can be WAi+1 is dead when

it is ready to leave Si, WAi+1 is dead when it has just

arrives at Si+1, or is dead when it has just arrived at Si+1

with logging.

In this case MAi+1 waits for the message msg_arrive

for timeout period. If the timeout is reached it sends to

MAi failure message failure_msg. Then MAi sends

failure_msg to RcAi and travel to Si+1 to recover the

failure. Figure 4. show the algorithm of case 1 and 2.

Figure 4. Algorithm of case 1 and 2.

4.1.3. The monitor MAi+1 fails to receive checkpoint

message

Case 3and 4 : The reason can be WAi+1 is dead when it

has just sends msg_arrive to MAi+1, finishes it

execution or do the checkpoint.

In this case MAi+1 waits for the checkpoint_msg for

timeout period. If the timeout period is reached, it

verify the checkpoint, if the checkpoint is Null it sends

Log arrival

Execute

Checkpoint

Log leave

Migrate

Case 1 Case 2 Case 3 Case 4 Case 5

Reach a new server

If (msg is valid)

If (MAi receive msgarrive)

 Write (receive arrive)

 Else // If (receive msgleave)

 Write (MAi receive leave)

 EndIf

EndIf

If (! receive msgarrive) //MAi+1 fail to receive msgarrive

 MAi+1 send failure_msg to MAi

If (MAi receive failure_msg)

 MAi send failure_msg to RcAi

 Migrate RcAi to the faulty server

 EndIf

EndIf

to MAi a failure message failure_msg. Then MAi send failure_msg to RcAi and travel to Si+1 to recover the

failure else it sends to MAi an error message

error_msg. Then MAi+1 creates a new replica agent

RcAi+1. RcAi+1 changes its status according to the

checkpoint to recover the failure. Figure 5 show the

algorithm of case 3 and 4.

Figure 5. Algorithm of case 3 and 4.

4.1.4. The monitor MAi+1 fails to receive msgleave

Case 5 : The reason can be WAi+1 is dead when it has

just sends checkpoint_msg to MAi+1 or log leave.

In this case MAi+1 waits for the msgleave for timeout

period. If the timeout is reached it sends to MAi error

message error_msg. Then MAi+1 creates a new replica

agent RcAi+1. RcAi+1 change its status according to the

checkpoint to recover the failure. Figure 6 show the

algorithm of case 5.

Figure 6. Algorithm of case 5.

4.1.5. The monitor MAi fails to receive msgarrive or

msgleave

The reasons can be the message msgarrive or msgleave is

lost due to an unreliable network or arrives after the

timeout period of MAi or WAi+1 and MAi+1 are died.

For the first reason the WAi+1 does not die in Si+1. In

this case MAi waits for the message for timeout period.

If the timeout is reached MAi sends Message-

failure_msg to RcAi and travel to Si+1 to search for

logarrive or logleave in Si+1. If found, then RcAi+1

retransmits msgarrive or msgleave to MAi, then kill itself.

When WAi fail to receive msgarrive, it sends Arrive-

Message-failure_msg to the RcAi and travel to Si+1 to

search for logarrive. Upon arriving at Si+1, it searches the

log file in Si+1 for the entry logarrive. If the log entry is

not found, RcAi+1 sends a message to MAi+1 to verify if

it is died or no. if RcAi+1 fails to receive the response,

it creates a new monitor and recover the WAi+1.

When WAi fail to receive msgleave, it sends leave-

Message-failure_msg to the RcAi and travel to Si+1 to

search for logleave. Upon arriving at Si+1, it searches the

log file in Si+1 for the entry logleave. If the log entry is

not found, RcAi+1 sends a message to MAi+1 and waits

for a response. If it fails to receive the response, it

creates a new monitor and searches the checkpoint. If

checkpoint is found, it sends Worker-failure-

AC_message to MAi and changes the status according

the checkpoint and sends its current address with error

to the Manager agent and waits for a response for

address of the next server and continue normally the

remaining task. Figure 7 show the algorithm.

Figure 7. Algorithm of message lost

4.1.6. WAi+1 and RcAi fail

In this case MAi+1 sends failure_msg to MAi. MAi

detects that RcAi dies then, it sends failure_msg to

MAi-1 in Si-1. Then MAi-1 sends failure_msg to RcAi-1

and migrates to Si+1 to recover the failure.

4.1.7. Monitor fails

If the monitor MAi is down, the monitor MAi-1 will

exclude it from the chain by linking with monitor

MAi+1.

If MAi+1 receives Reconnect message from a monitor,

it will reconnect to it.

4.2. In the fourth server

When the WA migrates to the fourth server and

terminates the execution, the RcAs and the MAs in the

previous servers will be killed, then if the WA stops its

execution due to any fault when it is in the next server,

in this situation immediately a fault message is sent

from the MA to the home server and we have no other

option than to send the replicated copy of the agent.

The data retrieved from the previous serves is already

saved to the home server with the checkpoints after

If (! receive checkpoint_msg)

 If (checkpoint == Null)

 MAi+1 send failure_msg to MAi

If (MAi receive failure_msg)

 MAi send failure_msg to RcAi

 Migrate RcAi to the faulty server

 EndIf

 Else

 MAi+1 send error_msg to MAi

 If (MAi receive error_msg)

 MAi+1 create RcAi+1

 RcAi+1 change the status according to the

 checkpoint

 EndIf

EndIf

If (! receive msgleave)

 MAi+1 send error_msg to MAi

 If (MAi receive error_msg)

 MAi+1 create RcAi+1

 RcAi+1 change the status according to the

 checkpoint

 EndIf

EndIf

If (! receive msgarrive) // or If (!receive msgleave)

 If (! receive failure_msg)

 MAi sends Message-failure_msg to RcAi

 Migrate RcAi to the Si+1

 If (found(logarrive))// or If (found logleave)

 Retransmit msgarrive to MAi // or msgleave

 EndIf

 EndIf

EndIf

every four servers. So the replicated agent needs not to

roll back to the first server in the itinerary.

The replicated agent is intelligent enough that it

already knows the location of the fault and the

immediate checkpoint before the fault. So it starts its

execution from the immediate checkpoint.

5. Implementation

We are going to simulate the developed approach

Integrated Replication-checkpoint Fault Tolerance

Approach using AGLETS-2.0.2 and going to evaluate

the agent survivability for failure recovery using the

round trip time (time required by mobile agent to

complete its itinerary) parameter. The works in [13]

and [14] will be compared to our developed approach.

6. Conclusion

The IRCFT approach supposed to improve and

enhance the survivability of the agent and it will

diminish the time needed for detecting faults and

repairing failure. Then the transmission of mobile

agent to the next server will be more reliable.

Furthermore, it will decrease trip time when errors

occur.

The agent replicas and checkpoint are not executing

while the original executing agent is active. Therefore,

only one execution of the agent will be guaranteed at

the same time. This property ensures the exactly once

execution which is the most important feature for the

agent execution. The non-blocking feature is also

guaranteed even in the case of multiple failures by

allowing the last checkpoint or the replica of the

crashed agent to replace it in order to continue

execution even in the case of agent failures. Hence,

both checkpoint and replication is introduced in the

suggested approaches to solve the blocking problem of

the mobile agent execution where the replication and

checkpoint masks failures and ensures progress of the

mobile agent execution.

References

[1] W. Qu and H. Shen, “Analysis of Mobile Agents,

Fault-Tolerant Behavior,” IEEE/WIC/ACM,

Proceedings of International Conference on

Intelligent Agent Technology, 2004, pp 377 – 380,

ISBN: 0-7695-2101-0.

[2] L. L. Pullum, “Software Fault Tolerance

Techniques and Implementation,” Artech House,

2001, ISBN 1-58053-137-7.

[3] W. Dake and C.P. Leguizamo and K. Mori,

“Mobile Agent Fault Tolerance in Autonomous

Decentralized Database Systems,” IEEE,

Proceedings of the Autonomous Decentralized

System on The 2nd International Workshop, 2002,

ISBN:0-7803-7624-2.

[4] G. Serugendo and A. Romanovsky, “Designing

Fault-Tolerant Mobile System,” Springer,

International Workshop on Scientific Engineering

for Distributed Java Applications, 2003, pp 185-

201, ISBN: 978-3-540-00679-4.

[5] F. Bellifemine, G. Caire and D. Greenwood,

“Developing Multi-Agent Systems with JADE,”

John Wiley & Sons Ltd, England. British Library

Cataloguing In Publication Data, 2007.

[6] S. Rajwinder and D. Mayank, “Antecedence Graph

Approach to Checkpointing for Fault Tolerance in

Mobile Agent Systems”, In Proc. of IEEE

Transactions On Computers, Volume 62, issue 2,

Publication IEEE Conference, February 2013.

[7] H. Rahul and K. Ramandeep, “Novel Dynamic

Shadow Approach for Fault Tolerance in Mobile

Agent Systems,” In Proc. of 6th International

Conference on Signal Processing Communication

Systems, Publication IEEE Conference, 2012.

[8] A. Rostami, H. Rashidi, M. S. zahraie, “Fault

Tolerance Mobile Agent System Using Witness

Agent in 2- Dimensional Mesh Network,” In Proc.

of International Journal of Computer Science

Issues, Vol. 7, Issue 5 , 2010.

[9] M. Dejan, B. Zoran, I. Mirzana and V.Milan,

“Improving Fault Tolerance of Distributed Multi-

Agent Systems with Mobile Network-Management

Agents,” In Proc. of the International

Multiconference on Computer Science and

Information Technology, pp. 217-222, 2010.

[10] L. Zeghache and N. Badache, “Optimistic

Replication Approach for Transactional Mobile

Agent Fault Tolerance,” In Proc. of 11th CIS

International Conference on Software Engineering,

Artificial Intelligence, Networking and

Parallel/Distributed Computing, 2010.

[11] P. Marikkannu, J.J. Adri Jovin, T.Purusothaman,

“Fault-Tolerant Adaptive Mobile Agent System

using Dynamic Role based Access Control,”

International Journal of Computer Applications

Volume 20–No.2, April 2011.

[12] K.Ramandeep, K.C. Rama and S.Rajwinder,

“Integrated mechanism to Prevent Agent Blocking

in Secure Mobile Agent Platform System,” In

Proc. of International Conference on Advances in

Computer Engineering, 2010.

[13] R.Hans, R.Kaur, “Fault Tolerance Approach in

Mobile Agents for Information Retrieval

Applications Using Check Points,” International

Journal of Computer Science & Communication

Networks, Vol2(3), 347-353, 2012.

[14] M.R.Lyu and T.Y.Wong, “A Progressive Fault

Tolerant Mechanism in Mobile Agent Systems,”

Proc. 7th World Multiconference on Systemics,

Cybernetics and Informatics, vol. IX, 2003, pp.

299–306.

