# New Algorithms to Find Reliability and Unreliability Functions of the Consecutive $\boldsymbol{k}$-out-of$n$ : F Linear \& Circular System <br> Imad I. H. Nashwan <br> Al Quds Open University, Palestine <br> Email: inashwan@qou.edu , imadnashwan@live.com 


#### Abstract

The consecutive $k$-out-of- $n$ : F linear and circular system consists of $n$ components. The system fails if at least $k$ consecutive components are in the failure state. In this paper, new algorithms to find the reliability and unreliability functions of the consecutive $k$-out-of- $n$ : F linear and circular system are obtained, in this context, the Index Structure Function (ISF), and two equivalence relations are defined to partition the failure and the functioning space of the consecutive $k$-out-of- $n$ : F circular system into finite mutual pairwise disjoint classes respectively, where the reliability and unreliability functions are the summations of reliability and unreliability of these equivalence classes. For the linear consecutive $k$-out-of- $n$ : F system, a boundary conditions are given to omit a specified failure states from the failure space of the circular case to achieve the failure states of the linear case, which facilitate the evaluation of the reliability and unreliability functions of the consecutive $k$-out-of$n$ : F linear system.


$\underline{\text { Keywords: Consecutive } k \text {-out-of- } n \text { : F systems, System reliability, equivalence relation, modular arithmetic. }}$

## Notations:

| $\mathrm{L}(\mathrm{C})$ | $:$ Linear (Circular) |
| :--- | :--- |
| i.i.d. | $:$ Independent and Identically distributed |
| mod | $:$ Modular arithmetic function |
| gcd | $:$ greatest common devisor |
| $\mathbb{I}_{j}^{i}$ | $:\{i, i+1, \ldots, j\}$ |
| $P\left(\mathbb{I}_{n}^{1}\right)$ | $:$ The power set of $\mathbb{I}_{n}^{1}$ |

$X=\left\{x_{1}<\ldots<x_{j}\right\}:$ a set $X=\left\{x_{1}, x_{2}, \ldots, x_{j}\right\}$ such that $x_{i}<x_{h}$ for all $i<h$
$i \underset{j}{\oplus} s \quad=(i+s) \bmod j$, if $i+s=n j \Rightarrow i \oplus \underset{j}{ } s=j$
$p_{i}\left(q_{i}\right) \quad$ :The reliability (unreliability) of the $i^{\text {th }}$ component.
$\bar{X} \quad:$ The complement of the set $X$.
$p_{X} \quad=\prod_{i \in \bar{X}} p_{i} \prod_{j \in X} q_{j}$
$p_{n}^{s} \quad=p(n, s)=p^{n-s} q^{s}$
$R(X)=p_{X}, F(X)=p_{X}$
$\mathbb{R}[X] \quad:$ Reliability of the class $[X]$
$\mathbb{F}[X] \quad:$ Unreliability of the class $[X]$
$\mathrm{C}(k, n) \quad:$ Consecutive $k$-out-of- $n$ : F system.
$\mathrm{CL}(k, n) \quad$ : Consecutive $k$-out-of- $n$ : F linear system.
$\mathrm{CC}(k, n) \quad:$ Consecutive $k$-out-of- $n$ : F circular system.
$|X| \quad:$ The cardinality of the set $X$.
$f^{\alpha} \quad:$ The composite function $\alpha$ times.
$\mathbb{R}_{j}^{L(C)}, \mathbb{F}_{j}^{L(C)} \quad$ : The reliability, unreliability function of the consecutive $k$-out-of- $n$ : F linear (circular) when the number of failed components is $j$.

## 1. Introduction

Through the last 2 decades in the last century, many researchers studied intensively and extensively the reliability of the consecutive $k$-out-of- $n$ : F system "C $(k, n)$ " due its importance in applications, low
expense and high reliability, the system consists of $n$ components, the components are ordered sequentially in a line or a circle, the system fails if, and only if at least $k$ consecutive components are in the failure state. Chiang and Niu [5] provided the two famous applications (Telecommunication System with $n$ Relay Stations (either satellites or ground stations) and Pipeline of Transmit Oil System with $n$ Pumps), Microwave Stations of a Telecom Network [4], Vacuum System in an Electron Accelerator and Photographing of a Nuclear Accelerator [9].
Chiang \& Niu [5] obtained the first recursive algorithm for computing the reliability of the consecutive $k$-out-of- $n$ : F linear system "CL $(k, n)$ ", Bollinger [2-3] introduced a simple and direct combinatorial formula for calculating the failure function of the system, while Derman et al. [6] was the first one who introduced and calculated the reliability of the consecutive $k$-out-of- $n$ : F circular system " $\mathrm{CC}(k, n)$ ", they provided a recursive algorithm for computing the reliability of the $\operatorname{CL}(k, n)$ and $\mathrm{CC}(k, n)$ with i.i.d. components, Shanthikumar [13] computed the reliability of the $\mathrm{CL}(k, n)$, when the components are stochastically independent with unequal failure probabilities, Hwang [7] studied both the $\mathrm{CL}(k, n) \& \mathrm{CC}(k, n)$, two recursive algorithms were introduced using two arguments for the $\mathrm{CL}(k, n)$, he extended also the argument of Deman et al. [6] to introduce a recursive equation for the $\mathrm{CC}(k, n)$. Lambiris and Papastavridis [10] introduced the first exact formula for the $\operatorname{CL}(k, n)$ and $\mathrm{CC}(k, n)$, where the components are i.i.d., Antonopoulou and Papastavridis [1] studied only the $\mathrm{CC}(k, n)$; they introduced a faster recursive algorithm than Hwang [7] and all other previous algorithms that obtaining the reliability of the
stochastically independent components with fewer components, Wu \& Chen [15] generalized the system through adding some conditions and restriction, and transformed the $\mathrm{CC}(k, n)$ to the $\mathrm{CL}(k, n)$ by adding virtual components to the circular system $n+1, n+2, \ldots$, $n+i, \ldots ., n+k-1$, where $n+i=i$, . Many recursive algorithms, lower and upper bounds, optimal design and exact formula were introduced by [8-9], [11], [12] and [14].
In this paper new algorithms to find the reliability and unreliability functions of the $\mathrm{CC}(k, n) \& \mathrm{CL}(k, n)$ are obtained. We recall and adapt the needed facts, and results from the set theory that is concerning relation between components in the circular system, the ISF and equivalence relations are defined, these relations are extended to represent the failure and functioning space of the $\mathrm{CC}(k, n) \& \mathrm{CL}(k, n)$, which yields to compute the reliability and unreliability functions.
The following assumptions are assumed to be satisfied by all systems below:

1. The state of the component and the system is either " functioning" or "failed"
2. All the components are mutually statistically independent.

## 2. The Index Structure Function

Definition 2.1: Consider a system consists of $n$ stochastically independent components, $\mathbb{I}_{n}^{1}$ is the indices of the components. Define the Index Structure Function (ISF) of the $i^{\text {th }}$ component

$$
\Gamma(i)= \begin{cases}0, & \text { if the } i^{\text {hh }} \text { component functions } \\ 1, & \text { if the } i^{h h} \text { component fails }\end{cases}
$$

The set $X=\left\{i \in \mathbb{I}_{n}^{1}: \Gamma(i)=1\right\} \subseteq \mathbb{I}_{n}^{1}$, represents the system and consists of all indices of the failed components e.g., the set $X=\{1,2\}$, for simply, $X=12$ indicates that the $1^{\text {st }}$ and the $2^{\text {nd }}$ components are only the failed components. Define the ISF of the whole system, $I: P\left(\mathbb{I}_{n}^{1}\right) \rightarrow\{0,1\}$,

$$
I(X)= \begin{cases}0, & \text { if the system is functioning } \\ 1, & \text { if the system is failed }\end{cases}
$$

Where, $P\left(\mathbb{I}_{n}^{1}\right)$ is the failure space of the components. The ISF is concerning the components positions and indices that is determining whether the system fails or not.

Definition 2.2: $X \subseteq \mathbb{I}_{n}^{1}$ is called functioning set, if $I(X)=0$, vice versa, a failed set if $I(X)=1$. In this context, the ISF divides $P\left(\mathbb{I}_{n}^{1}\right)$ into two main following disjoint sub collections:

- $\Theta=\left\{X \in P\left(\mathbb{I}_{n}^{1}\right): I(X)=0\right\}$ the functioning space of the system
- $\Psi=\left\{Y \in P\left(\mathbb{I}_{n}^{1}\right): I(Y)=1\right\}$ the failed space of the system.


## 3. Reliability Using the ISF

Definition 3.1: The reliability of the $i^{\text {th }}$ component is $P(\Gamma(i)=0)=p_{i}$, hence if the system represented by the functioning set $X \in \Theta$, then the reliability of the system is $R(X)=P(I(X)=0)=p_{X}$, which implies, the reliability function of the system $\mathbb{R}$ is the probability that the system has any functioning set; i.e., $\mathbb{R}=\sum_{X \in \Theta} R(X)$.

While, the unreliability of the $i^{\text {th }}$ component is $P(\Gamma(i)=1)=q_{i}=1-p_{i}$. If the system represented by the failed set $Y \in \Psi$, then the system unreliability is $F(Y)=P(I(Y)=1)=p_{Y} \quad$ and the unreliability function of the system $\mathbb{F}$ is the probability that the system has any failed set $\mathbb{F}=\sum_{Y \in \Psi} F(Y)=1-\mathbb{R}$.

## 4. The Circular System Model

The circular system model is any system consists of $n$ stochastically independent components, and arranged in a circle. Define the circular system model using ISF, where $\mathbb{I}_{n}^{1}$ is the indices of the components, and the set $X \subseteq \mathbb{I}_{n}^{1}$ represents the system, which consists of all failed components.
The positions of the components in the circle applies that the participation of any component in the system status, "whether functioning or failed" is equivalent to the participation of any other component. To simulate this property, define the bijection function, $f_{n}: \mathbb{I}_{n}^{1} \rightarrow \mathbb{I}_{n}^{1}$ $f_{n}(x)=(x \bmod n)+1$ for any $x \in \mathbb{I}_{n}^{1}$, and a relation between any $X, Y \in P\left(\mathbb{I}_{n}^{1}\right)$ such that $X \equiv Y$ if, and only if, there exist $\alpha \in \mathbb{Z}$ such that $f_{n}^{\alpha}(X)=Y$.

Lemma 4.1: ( $\equiv$ ) is an equivalence relation.
Proof: Reflexivity: $X \sim X$ since $X=f_{n}^{n}(X)$
Transitivity:If $X \sim Y \Leftrightarrow$ there exists $\alpha_{1}$ such that
$Y=f_{n}^{\alpha_{1}}(X)$ and $Y \sim Z \Leftrightarrow$ there exists $\alpha_{2}$ such that
$Z=f_{n}^{\alpha_{2}}(Y) \Rightarrow Z=f_{n}^{\alpha_{2}}\left(f_{n}^{\alpha_{1}}(X)\right)=f_{n}^{\alpha_{1}+\alpha_{2}}(X) \Rightarrow X \sim Z$.
Symmetry: If $X \sim Y$ there exists $\alpha$ such that $Y=f_{n}^{\alpha}(X)$, hence $X=f_{n}^{n-\alpha}(Y) \Leftrightarrow Y \sim X$.

According to lemma 4.1 $P\left(\mathbb{I}_{n}^{1}\right)$ is a union of a finite partition of mutually disjoint classes like $[X]=\left\{f_{n}^{\alpha}(X): \alpha=1,2, \ldots, n\right\}$, as well as the $\Theta$, and $\Psi$.

For example, in the circular system of 6 components, $[13]=\{13,24,35,46,15,26\}$.

### 4.1. The Rotations in the Circular System

Definition 4.1.1: Let $X \in P\left(\mathbb{I}_{n}^{1}\right)$ represents the circular system, define the orbit of $X$ as $\beta_{X}=\min \left\{\alpha \in \mathbb{Z}: f_{n}^{\alpha}(X)=X\right\}$. Note that $[X]=\left\{f_{n}^{\alpha}(X): \alpha=1,2, \ldots, \beta_{X}\right\}$.

Lemma 4.1.1: For all $X \in P\left(\mathbb{I}_{n}^{1}\right), \beta_{X}$ divides $n$.
Proof: Since $f_{n}^{n}(X)=X$ for all $X \in P\left(\mathbb{I}_{n}^{1}\right)$, then $\beta_{X} \leq n$. If $\beta_{X}=n$ we done. Otherwise if $\beta_{X}<n$, and $\beta_{X}$ does not divide $n$, then $n=a \beta_{X}+b$, where $0<b=n \bmod \beta_{X}$.
$X=f_{n}^{n}(X)=f_{n}^{a \beta_{X}+b}(X)=f_{n}^{b}\left(f_{n}^{a \beta_{X}}(X)\right)=f_{n}^{b}(X)$ but, $b<\beta_{X}$, which contradicts that $\beta_{X}$ is the minimum integer such that $X=f_{n}^{\beta_{X}}(X)$.
Note: If $Y \in[X]$

1. There exist $\alpha \in \mathbb{Z}$ such that $f_{n}^{\alpha}(X)=Y$, but $f_{n}^{\beta_{X}}(Y)=f_{n}^{\beta_{X}}\left(f_{n}^{\alpha}(X)\right)=f_{n}^{\alpha}\left(f_{n}^{\beta_{X}}(X)\right)=f_{n}^{\alpha}(X)=Y$ $\Rightarrow \beta_{Y}=\beta_{X}$
2. $|X|=|Y|$.
3. $\mathbb{R}[X]=\sum_{Z \in[X]} R(Z)=\sum_{Z \in[X]} p_{Z}=\sum_{\alpha=1}^{\beta_{X}} p_{f_{n}^{\alpha}(X)}$.
4. $\mathbb{F}[X]=\sum_{Z \in[X]} F(Z)=\sum_{Z \in[X]} p_{Z}=\sum_{\alpha=1}^{\beta_{X}} p_{f_{n}^{\alpha}(X)}$.

Definition 4.1.2 : Let $X=\left\{x_{1}<\ldots<x_{j}\right\} \subseteq \mathbb{I}_{n}^{1}$, represents the circular system, define $d_{X}=\left(d_{1}^{X}, d_{2}^{X}, \ldots, d_{j}^{X}\right)$ the rotation of $X$, where $d_{i}^{X} \geq 1$ is the minimum integer number such that $f_{n}^{d_{i}^{x}}\left(x_{i}\right)=x_{i+1}$, for $i=1,2, \ldots, j-1$, and $f_{n}^{d_{j}^{x}}\left(x_{j}\right)=x_{1}$, also define the following:

1. $d_{X}^{r}=\left(d_{j-r+1}^{X}, \ldots, d_{j}^{X}, d_{1}^{X}, \ldots, d_{j-r}^{X}\right)$ is the $r^{\text {th }}$ rotation of $X$. (note that $d_{X}^{j+s}=d_{X}^{s}$ ).
2. The set of all rotations of the set $X$ is $D(X)=\left\{d_{X}^{r}: r=1,2, \ldots, j\right\}$.
Note: If $X=\left\{x_{1}<\ldots<x_{j}\right\} \subseteq \mathbb{I}_{n}^{1}$, then, anyone can easily shows that
3. $n=\sum_{i=1}^{j} d_{i}^{X}$.
4. If $d_{i}^{X}=t$ for all $i=1,2, \ldots, j$, then $\beta_{X}=t$.

Definition 4.1.3: Let $X, Y \in P\left(\mathbb{I}_{n}^{1}\right)$ be any states of the circular system, we say " $Y$ is a rotation of $X$ ", denoted
by $\quad X \sim Y$ if $d_{Y} \in D(X)$ or there exists $r \in\{1,2, \ldots, j\}$ such that $d_{Y}=d_{X}^{r}$.
Lemma 4.1.3: $(\sim)$ is an equivalence relation.
Proof: Reflexivity: $X \sim X \Leftrightarrow d_{X}^{j}=d_{X}$
Transitivity: Let $X \sim Y \Leftrightarrow$ there exist $r_{1}$ such that $d_{Y}=d_{X}^{r_{1}}$, and if $Y \sim Z \Leftrightarrow$ there exist $r_{2}$ such that $d_{Z}=d_{Y}^{r_{2}}$, then $d_{Z}=d_{Y}^{r_{2}}=d_{X}^{r_{2} \oplus r_{1}}$
Symmetry: $\quad X \sim Y \Leftrightarrow$ there exist $r$ such that
$d_{Y}=d_{X}^{r} \Rightarrow$
$d_{X}=d_{Y}^{j-r} \Rightarrow Y \sim X$.

Theorem 4.1.1: $X \equiv Y \Leftrightarrow X \sim Y$.
Proof: Assume $X \equiv Y \Rightarrow$ there exist $\alpha$ such that $f_{n}^{\alpha}(X)=Y, f_{n}^{\alpha}$ is a bijection function for each $\alpha$, hence, $|X|=|Y|=j$. let $Y=\bigcup_{i=1}^{j} f_{n}^{\alpha}\left(x_{i}\right)$, WLOG, let $f_{n}^{\alpha}\left(x_{i}\right)=y_{i}$ for all $i=1,2, \ldots, j$, if $d_{X}=\left(d_{1}^{X}, d_{2}^{X}, \ldots, d_{j}^{X}\right)$, then $f_{n}^{d_{i}^{X}}\left(y_{i}\right)=f_{n}^{d_{i}^{X}}\left(f_{n}^{\alpha}\left(x_{i}\right)\right)=f_{n}^{\alpha}\left(f_{n}^{d_{i}^{X}}\left(x_{i}\right)\right)=$ $=f_{n}^{\alpha}\left(x_{i+1}\right)=y_{i+1} \Rightarrow d_{X}^{i}=d_{Y}^{i} \Leftrightarrow d_{X}=d_{Y}^{j}$ then $X \sim Y$.
Conversely: if $X \sim Y$, there exist $r \in\{1, \ldots, j\}$ such that, $d_{Y}=d_{X}^{r}$. Since $|X|=|Y|=j$, let
$X=\bigcup_{t=1}^{j} x_{t}, Y=\bigcup_{t=1}^{j} y_{t}$, as a result of $r^{\text {th }}$ rotation, the element $x_{t}$ will rotate to the element $y_{f_{j}^{f}(t)}$, define the function $g\left(x_{t}\right)=y_{f_{j}^{\prime}(t)}$, let
$\alpha=\min \left\{\gamma \in \mathbb{Z}: f_{n}^{\gamma}\left(x_{t}\right)=g\left(x_{t}\right), \forall x_{t} \in X\right\}$, if and only if $f_{n}^{\alpha}(X)=Y \Leftrightarrow X \equiv Y$.
For example in the circular system with 10 components, if $\quad X=\{149\}, Y=\{168\} \in P\left(\mathbb{I}_{10}^{1}\right) \Rightarrow$
$d_{X}=(3,5,2), d_{Y}=(5,2,3) \Rightarrow d_{Y}=d_{X}^{2} \Rightarrow g\left(x_{t}\right)=y_{f_{j}^{2}(t)}$
$\Rightarrow g\left(x_{1}\right)=g(1)=y_{3}=8, g\left(x_{2}\right)=g(4)=y_{1}=1$,
$g\left(x_{3}\right)=g(9)=y_{2}=6 \Rightarrow$
$\alpha=\min \left\{\gamma \in \mathbb{Z}: f_{10}^{\gamma}\left(x_{t}\right)=g\left(x_{t}\right): \forall x_{t} \in X\right\}$

$$
=\min \{7,17, \ldots\}=7 \Rightarrow f_{10}^{7}(\{149\})=\{168\} .
$$

Note: According Theorem 4.1.1 if $d_{Y}=d_{X}^{r} \Rightarrow$ $[X]=[Y]$.

Theorem 4.1.2: Consider a circular system of n components, $j$ the number of failed components, then

1. If $a \in \mathbb{Z}$ such that $a \times j=n$, then there exist $X_{a} \in P\left(\mathbb{I}_{n}^{1}\right)$ such that $\left|X_{a}\right|=j$ and $\beta_{X_{a}}=a$.
2. If $X \in P\left(\mathbb{I}_{n}^{1}\right)$ such that $|X|=j$ and
$d_{X}=(\underbrace{\overbrace{1}^{d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}}, \underbrace{d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}}_{2}, \ldots \ldots, \underbrace{d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}}_{r}}_{1})$, then $\beta_{X}=\sum_{i=1}^{s} d_{i}^{X}$.
3. If $s, a \in \mathbb{Z}$ such that $a \times j=n$, and $s$ divide $j$, then there exist $Y_{s} \in P\left(\mathbb{I}_{n}^{1}\right)$ and $\left|Y_{s}\right|=j$ such that $\beta_{Y_{s}}=s \times a$.

## Proof:

1. Take $d_{X_{a}}=(\underbrace{a, \ldots, a}_{j \text { times }}), \quad$ fix any $\quad x_{i} \in \mathbb{I}_{n}^{1}, \quad$ and $x_{i+1}=f_{n}^{a}\left(x_{i}\right): i \in \mathbb{I}_{j-1}^{1}$, hence $f_{n}^{a}\left(x_{j}\right)=x_{1}$. Define $X_{a} \in P\left(\mathbb{I}_{n}^{1}\right) \quad$ such that $\quad X_{a}=\bigcup_{i=1}^{j} x_{i}, \quad$ then $f_{n}^{a}\left(X_{a}\right)=f_{n}^{a}\left(\bigcup_{i=1}^{j} x_{i}\right)=\bigcup_{i=1}^{j} f_{n}^{a}\left(x_{i}\right)=\bigcup_{i=0}^{j-1} x_{i+1}=X_{a}$ $\Leftrightarrow \beta_{X_{a}}=a$.
2. Use theorem 4.1.1 $d_{X}=d_{X}^{s}$
$\alpha=\min \left\{\gamma \in \mathbb{Z}: f_{n}^{\gamma}\left(x_{t}\right)=x_{f_{j}^{s}(t)}\right\}=\sum_{i=1}^{s} d_{i}^{X}=\beta_{X}$
3. Use 1 , there exist $X_{a} \in P\left(\mathbb{I}_{n}^{1}\right)$ with $\beta_{X_{a}}=a$, where $d_{X_{a}}=(\underbrace{a, a, \ldots, a}_{j \text { times }})$, take $d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}$ not all of them $a$, such that $s a=\sum_{i=1}^{s} d_{i}^{X}$, define the set $Y_{s}$ such that

$$
d_{Y_{s}}=(\overbrace{1}^{\overbrace{\underbrace{X}_{1}, d_{2}^{X}, \ldots, d_{s}^{X}}^{d_{1}}, \underbrace{d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}}_{2}, \ldots ., \underbrace{d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}}_{a=(j / s)}})
$$

then according 2, then $\beta_{Y_{s}}=s \times a=\sum_{i=1}^{s} d_{i}^{X}$.
For example, in a circular system with 48 components, if $j=6$, apply Theorem 4.1.2.

1. $\quad a=(48 / 6)=8$ define $d_{X_{a}}=(8,8,8,8,8,8)$ i.e.;
$X_{a}=\{1,9,17,25,33,41\} \Rightarrow \beta_{X_{a}}=8$.
2. Since 2 divide 6 , then $2 \times 8=\sum_{i=1}^{2} d_{i}=16$ take

$$
d_{Y_{s}}=(1,15,1,15,1,15),(2,14,2,14,2,14), \ldots, \text { to }
$$

$$
(7,9,7,9,7,9) \Rightarrow \beta_{Y_{s}}=16
$$

3. Since 3 divide 6 , then $3 \times 8=\sum_{i=1}^{3} d_{i}$, take

$$
\begin{aligned}
d_{Y_{s_{i}}}= & (1,8,15,1,8,15),(2,7,15,2,7,15), \ldots, \\
& (7,8,9,7,8,9),(7,9,8,7,9,8) \Rightarrow \beta_{Y_{s_{i}}}=24 \\
d_{Z_{s}}= & (1,9,14,1,9,14) \ldots \Rightarrow \beta_{Z_{s}}=24
\end{aligned}
$$

Theorem 4.1.3: Consider a circular system of $n$ components, $j$ the number of failed components, If $a>1$ is a common divisor of $j$ and $n$, then there exist $X \in P\left(\mathbb{I}_{n}^{1}\right)$, such that $\frac{n}{a}=\beta_{X}<n$.
Proof: If $a>1$, and $a$ divide $n$, then there exists $m \in \mathbb{Z}$, such that $m a=n: m>1$. Since $a>1$ also divide $j$, let $s=\frac{j}{a}<j$. Now, take $d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}$ any number, such that $m=\sum_{i=1}^{s} d_{i}^{X}$ and fix any $x_{1} \in \mathbb{I}_{n}^{1}$, and let $x_{2}=f_{n}^{d_{1}^{x}}\left(x_{1}\right)$,
$x_{3}=f_{n}^{d_{2}^{X}}\left(x_{2}\right)=f_{n}^{\sum_{i=1}^{2} d_{i}^{X}}\left(x_{1}\right) \ldots, x_{s+1}=f_{n}^{\sum_{i=1}^{s} d_{i}^{X}}\left(x_{1}\right)=f_{n}^{d_{s}^{X}}\left(x_{s}\right)$ take which generated by $d_{X}=(\underbrace{\overbrace{m=\beta_{X}=\sum_{i=1}^{X} d_{i}^{X}}^{d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}}, \underbrace{d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}}_{m=\beta_{X}=\sum_{i=1}^{s} d_{i}^{X}}, \ldots, \underbrace{a \text { times }}_{d_{1}^{d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}}}}_{m=\beta_{X}=\sum_{i=1}^{s} d_{i}^{X}})$.
Note that, $|X|=j, n=\sum_{i=1}^{j} d_{i}^{X}$, and according to 3 in Theorem 4.1.2, $m=\beta_{X}<n$.

Theorem 4.1.4: Consider a circular system of $n$ components, $\quad X=\left\{x_{1}<\ldots<x_{j}\right\} \subseteq \mathbb{I}_{n}^{1}$ represents the system. If $\operatorname{gcd}(n, j)=1$ then $\beta_{X}=n$.
Proof: Assume $X=\left\{x_{1}<\ldots<x_{j}\right\} \subseteq \mathbb{I}_{n}^{1}$ and $\beta_{X}<n$,
Lemma 4.1.1. implies $\beta_{X}$ divides $n$, there exist $t>1$ such that $t \beta_{X}=n$. Since $f_{n}^{\beta_{X}}(X)=X$, hence $\forall x_{i} \in X$ there exists $x_{i \oplus s} \in X$ such that $f_{n}^{\beta_{X}}\left(x_{i}\right)=x_{i \oplus s} \neq x_{i}$, also since $x_{i}<x_{i+1}$, then $f_{n}^{\beta_{X}}\left(x_{i+1}\right)=x_{i+1 \oplus s} \neq x_{i+1}$. Let $d_{X}=\left(d_{1}^{X}, d_{2}^{X}, \ldots, d_{j}^{X}\right)$ the rotation of $X$, WLOG take $i+s+1<j$, hence
$f_{n}^{\beta_{X}}\left(x_{i}\right)=f_{n}^{\sum_{r=0}^{s-1} d_{i+r}^{X}}\left(x_{i}\right)=x_{i+s} \Rightarrow \beta_{X}=\sum_{r=0}^{s-1} d_{i+r}^{X}$, also $f_{n}^{d_{i+1}^{x}}\left(x_{i+1}\right)=x_{i+2}, f_{n}^{\sum_{r=1}^{2} d_{i+r}^{x}}\left(x_{i+1}\right)=x_{i+3}, \ldots \ldots, f_{n}^{\sum_{r=1}^{s} d_{i+r}^{x}}\left(x_{i+1}\right)=x_{i+1+s} \Rightarrow$ but $f_{n}^{\beta_{X}}\left(x_{i+1}\right)=x_{i+1+s} \Rightarrow \beta_{X}=\sum_{r=1}^{s} d_{i+r}^{X} \Rightarrow d_{i}^{X}=d_{i+s}^{X}$
Since $t \beta_{X}=n=\sum_{i=1}^{n} d_{i}^{X}$, then
$d_{X}=(\underbrace{\overbrace{d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}}, \underbrace{d_{1}^{X}, d_{2}^{X}, \ldots, d_{s}^{X}}_{\beta_{X}}, \ldots .,, \underbrace{t \text { times }}_{\beta_{X}} d_{j-s+1}^{X}, d_{j-s+2}^{X}, \ldots, d_{j}^{X}}_{\beta_{X}})$

$$
\left.\begin{array}{c}
d_{1}^{X}=d_{s+1}^{X}=d_{2 s+1}^{X}=\ldots=d_{j-s+1}^{X} \\
d_{2}^{X}=d_{s+2}^{X}=d_{2 s+2}^{X}=\ldots=d_{j-s+2}^{X} \\
\vdots \\
d_{s}^{X}=d_{2 s}^{X}=d_{3 s}^{X}=\ldots=d_{j-s+s}^{X}
\end{array}\right\}, \underbrace{\left(\beta_{X}=t\left(\sum_{i=1}^{s} d_{i}^{X} d_{i}^{X}\right)+\left(\sum_{i=1}^{s} d_{i}^{X}\right)+\ldots .+\left(\sum_{i=1}^{s} d_{i}^{X}\right)\right.}_{(j / s)=t \text { times }}, ~=\underbrace{\left(\sum_{i=1}^{s} d_{i}^{X}\right)+\left(\sum_{i=s+1}^{2 s} d_{i}^{X}\right)+\left(\sum_{i=2 s+1}^{3 s} d_{i}^{X}\right)+\ldots .+\left(\sum_{i=j-s+1}^{j} d_{i}^{X}\right)}_{t \text { times }},
$$

$\Rightarrow t \times s=j$
This implies that $\operatorname{gcd}(n, j)=t>1$ which contradicts the assumption.

## 5. The consecutive $\boldsymbol{k}$-out-of- $\boldsymbol{n}$ : $\mathbf{F}$ systems <br> 5.1. The consecutive $k$-out-of- $n$ : $F$ circular system

Let $\mathbb{I}_{n}^{1}$ be the indices of the components in the $\mathrm{CC}(k, n)$, it fails if it contains any $k$ consecutive failed components. If $X=\left\{x_{1}<\ldots<x_{j}\right\} \subseteq \mathbb{I}_{n}^{1}$ represents the system and consists of all indices of the failed components, then the system fails if, and only if any of the following is valid:

1. $\mathbb{I}_{i+k-1}^{i} \subseteq X, i \in \mathbb{I}_{n}^{1}$ where the $(n+1)^{\text {th }}$ is the $1^{\text {st }}$ component, the $(n+2)^{\text {th }}$ is the $2^{\text {nd }}$ component ...etc.)
2. $\sum_{s=0}^{k-2} d_{i \oplus j}^{X}=k-1 \quad$ for $\quad$ any $\quad i \in \mathbb{I}_{j}^{i}$, where $d_{X}=\left(d_{1}^{X}, d_{2}^{X}, \ldots, d_{j}^{X}\right)$ is the rotation of $X$.
Note that, if $X$ hold any of the above conditions, then $X$ is a "failed set", otherwise "functioning set", e.g. in the $\mathrm{CC}(3,7) \quad X=127, Y=2346$ are failed sets, since $d_{127}=(1,5,1) \Rightarrow \sum_{s=0}^{3-2} d_{\substack{3 \oplus s}}^{X}=1+1=3-1=2$, and $\mathbb{I}_{4}^{2} \subseteq 2346$, while the set $Z=137$ is a functioning set. In this context, the ISF function of the $\mathrm{CC}(k, n)$
$I_{C}(X)=\left\{\begin{array}{lll}1 & \bigcup_{\alpha=0}^{k-1} f_{n}^{\alpha}(i) \subseteq X & \text { for some } i \in \mathbb{I}_{n}^{1} \\ 0 & \text { otherwise } . & \end{array}\right.$

$$
=\left\{\begin{array}{ll}
0 & \sum_{s=0}^{k-2} d_{i \oplus j}^{X}>k-1, \text { for all } i \in \mathbb{I}_{j}^{1} \\
1 & \sum_{s=0}^{k-2} d_{i \oplus j}^{X}=k-1, \text { for some } i \in \mathbb{I}_{j}^{1}
\end{array}\right\}
$$

Hence the failure (functioning) space of the $\operatorname{CC}(k, n)$ is $\Psi_{C}^{k}\left(\Theta_{C}^{k}\right)=\left\{X \in P\left(\mathbb{I}_{n}^{1}\right): I_{C}(X)=1(0)\right\}$.
Note that, the symmetric property of the components in the circular system is applicable in the $\operatorname{CC}(k, n)$, i.e. $P\left(\mathbb{I}_{n}^{1}\right)$ as well as, $\Theta_{C}^{k}\left(\Psi_{C}^{k}\right)$ the functioning (failure)
space of the $\mathrm{CC}(k, n)$ are a union of mutual pairwise disjoint classes like $[X]$, therefore, the reliability (unreliability) function of the $\mathrm{CC}(k, n)$ are $\mathbb{R}_{C}=\sum_{[X] \in \Theta_{c}^{\varepsilon}} \mathbb{R}[X], \mathbb{F}_{C}=\sum_{[X] \in \Psi_{c}^{k}} \mathbb{F}[X]$ respectively.
For example, in the i.i.d., $\mathrm{CC}(2,8)$, the functioning class $\quad[1357]=\{1357,2468\} \in \Theta_{C}^{2} \quad$ consists of a functioning sets, and $\mathbb{R}_{C}[1357]=p_{1357}+p_{2468}=2 p_{8}^{4}$, while, the failed class $[12]=\{12,23,34,45,56,67,78,18\} \in \Psi_{C}^{2}$ consists of a failed sets, hence $\mathbb{F}_{C}[12]=p_{12}+p_{23}+\ldots+p_{18}=8 p_{8}^{6}$.

Lemma 5.1.1: Consider the $\operatorname{CC}(k, n)$, and $Y \in[X]$, i.e. $f_{n}^{\alpha}(X)=Y$, for some $\alpha \in \mathbb{Z}$, then

1. If $X$ is a functioning (failed) set, then $Y$ also is a functioning (failed) set.
2. If the components are $s$-independent then

$$
\mathbb{R}_{C}(Y)=p_{f_{n}^{\alpha}(X)}, \mathbb{F}_{C}(Y)=p_{f_{n}^{\alpha}(X)}
$$

3. If the components are i.i.d., then $\mathbb{R}_{C}(Y)=\mathbb{R}_{C}(X)$ and $\mathbb{F}_{C}(Y)=\mathbb{F}_{C}(X)$.

## Proof:

1. Let $X$ be a failed set, i.e. for any $r \in \mathbb{I}_{n}^{1}$ $\bigcup_{\beta=0}^{k-1} f^{\beta}(r) \subseteq X$, since $f_{n}{ }^{\alpha}$ is a bijection for each $\alpha \in \mathbb{Z}$, then $f_{n}^{\alpha}\left(\bigcup_{\beta=0}^{k-1} f^{\beta}(r)\right) \subseteq f_{n}^{\alpha}(X)=Y$, which implies, $Y$ is a failed set (The same proof for the functioning set, if we put $\not \subset$ instead of $\subseteq$ ).
2. $\quad \mathbb{R}_{C}(Y)=R(Y)=p_{Y}=p_{f_{n}^{\alpha}(X)}$ $\mathbb{F}_{C}(Y)=R(Y)=p_{Y}=p_{f_{n}^{\alpha}(X)}$
3. Since $f_{n}{ }^{\alpha}$ is a bijection function for each $\alpha$, then $|X|=|Y|$, and if the components are i.i.d., i.e.; $p_{j}=p: j=1,2, \ldots, n, \quad$ then $\quad \mathbb{R}_{C}(Y)=p_{Y}=p_{n}^{|Y|}=$ $=p_{n}^{|X|}=p_{X}=\mathbb{R}_{C}(X) \quad$ (The same proof for $\left.\mathbb{F}_{C}(Y)=\mathbb{F}_{C}(X)\right)$.

### 5.2. The Consecutive $k$-out-of- $n$ : F linear system

Let $\mathbb{I}_{n}^{1}$ be the indices of the components of the $\mathrm{CL}(k, n)$, the system fails if it contains $k$ failed components. If $X=\left\{x_{1}<\ldots<x_{j}\right\} \subseteq \mathbb{I}_{n}^{1}$ represents the system, and consists of all indices of the failed components, then the system fails " $X$ is a failed set for the $\mathrm{CL}(k, n)$ " if, and only if $\mathbb{I}_{i+k-1}^{i} \subseteq X$ where $i \in \mathbb{I}_{n-k+1}^{1}$, e.g. in the $\mathrm{CL}(2,5) X=12$ is a failed set, while $Y=13$ is a functioning set.

In this context, the ISF function of the consecutive $k$ -out-of- $n$ : F linear system

$$
I_{L}(X)= \begin{cases}1 & \mathbb{I}_{i+k-1}^{i} \subseteq X \text { for some } i \in \mathbb{I}_{n-k+1}^{1} \\ 0 & \text { otherwise. }\end{cases}
$$

Hence the failure (functioning) space of the $\mathrm{CL}(k, n)$ is $\Psi_{L}^{k}\left(\Theta_{L}^{k}\right)=\left\{X \in P\left(\mathbb{I}_{n}^{1}\right): I_{L}(X)=1(0)\right\}$.
It is worth mentioning that, many researchers consider the $\mathrm{CC}(k, n)$ as a generalization of the $\mathrm{CL}(k, n)$, due to connection between the $1^{\text {st }}$ and the $n^{\text {th }}$ components, this connection generates extra possible system failures, which leads to the fact $\Psi_{L}^{k} \subseteq \Psi_{C}^{k}$, or $\Theta_{L}^{k} \supseteq \Theta_{C}^{k}$ for any $k \leq n$. In this context, we will omit the extra failure states from $\Psi_{C}^{k}$ to achieve $\Psi_{L}^{k}$.

Lemma 5.2.1: Consider the $\operatorname{CC}(k, n)$ system, and $X=\left\{x_{1}<\ldots<x_{j}\right\} \in \Psi_{C}^{k}$ represents the system, such that $d_{X}=\left(d_{1}^{X}, d_{2}^{X}, \ldots, d_{j}^{X}\right)$, then $X \notin \Psi_{L}^{k}$ or $X \in \Theta_{L}^{k}$, if $X$ holds the following boundary conditions:

1. $d_{j}^{X}=1$,
2. $\sum_{s=0}^{k-2} d_{i \oplus_{j} s}^{X}=k-1$ for any $i \in \mathbb{I}_{j}^{j-(k-2)}$.
3. $\sum_{i=0}^{k-2} d_{i+1}^{X}>k-1$ for all $i \in \mathbb{I}_{j-(k-1)}^{1}$.

Proof: Due to connection between the $1^{\text {st }}$ and the $n^{\text {th }}$ components, it is clear that the $1^{\text {st }}$ and the $2^{\text {nd }}$ condition ensure that $X \in \Psi_{c}^{k}$, but the $3^{\text {rd }}$ condition, implies that, $d_{i}+\ldots+d_{i+k-2}>k-1$ for all $i \in \mathbb{I}_{j-(k-1)}^{1}$, then there exist $d_{t}>1$ for some $t \in \mathbb{I}_{i+k-2}^{1}$, which implies that $\mathbb{I}_{i+k-1}^{i} \not \subset X$ for all $i \in \mathbb{I}_{n-k+1}^{1}$, hence $X \notin \Psi_{L}^{k}$.
For example in the $\mathrm{CC}(3,8), d_{1278}=(1,5,1,1) \Rightarrow d_{4}=1$, and $d_{3}+d_{4}=2, d_{4}+d_{1}=2 \Rightarrow 1278 \in \Psi_{C}^{k}$, but $\sum_{t=0}^{1} d_{i+1}^{X}>3$ for all $i \in \mathbb{I}_{2}^{1} \Rightarrow 1278 \notin \Psi_{L}^{k}$.

## 6. The Proposed Algorithms.

6.1. The unreliability function of the $\operatorname{CC}(k, n)$.

If $j$ is the number of failed components in the $\mathrm{CC}(k, n)$,

1. Find $\mathbb{F}_{j}$.
1.1. For each $j=k, k+1, \ldots, n$, determine the rotations $\left(d_{1}, d_{2}, \ldots, d_{j}\right)$ such that $n=\sum_{i=1}^{j} d_{i}$ and $\sum_{s=0}^{k-2} d_{i} i_{j}^{X}=k-1$ for some $i \in \mathbb{I}_{j}^{1}$.
1.2. Find the corresponding failed sets $X \in P\left(\mathbb{I}_{n}^{1}\right)$.
1.3. Find the corresponding $[X], \beta_{X}$ and then $\mathbb{F}_{j}^{C}$
1.4. If $d_{Y}=d_{X}^{r}$, then $[Y]=[X]$.
2. The unreliability function $\mathbb{F}_{C}=\sum_{j=k}^{n} \mathbb{F}_{j}^{C}$.

Example 5.1.1: Find the failure function of the i.i.d. $\mathrm{CC}(3,8)$.
Find all $\left(d_{1}, d_{2} \ldots, d_{j}\right)$ such that $8=\sum_{i=1}^{j} d_{i}$ and $\sum_{s=0}^{1} d_{i \oplus, s}=2$, for some $i \in \mathbb{I}_{j}^{1}$ i.e. $d_{i \oplus, j}+d_{i+1 \oplus s}=2$ for some $i \in \mathbb{I}_{j}^{1}$.
When $j=3$,

$$
\begin{aligned}
& (1,1,6) \Rightarrow\{123\}=d_{123} \Rightarrow \beta_{123}=8 \\
& {[123]=\{123,234,345,456,567,678,178,128\}} \\
& \Rightarrow \mathbb{F}[123]=8 p_{8}^{5} \quad \mathbb{F}_{3}^{C}=8 p_{8}^{5}
\end{aligned}
$$

## When $j=\mathbf{4}$,

$(1,1,1,5) \Rightarrow \beta_{1234}=8 \Rightarrow \mathbb{F}[1234]=8 p_{8}^{4}$
$[1234]=\{1234,2345,3456,4567,5678,1678,1278,1238\}$
$(1,1,2,4) \Rightarrow\{1235\} \Rightarrow \beta_{1235}=8 \Rightarrow \mathbb{F}[1235]=8 p_{8}^{4}$
$(1,1,3,3) \Rightarrow\{1236\} \Rightarrow \beta_{1236}=8 \Rightarrow \mathbb{F}[1236]=8 p_{8}^{4}$
$(1,1,4,2) \Rightarrow\{1237\} \Rightarrow \beta_{1237}=8 \Rightarrow \mathbb{F}[1237]=8 p_{8}^{4}$
$\mathbb{F}_{4}^{C}=32 p_{8}^{4}$
When $j=5$,
$(1,1,1,1,4) \Rightarrow\{12345\} \Rightarrow \beta_{12345}=8 \Rightarrow \mathbb{F}[12345]=8 p_{8}^{3}$
$(1,1,1,2,3) \Rightarrow\{12346\} \Rightarrow \beta_{12336}=8 \Rightarrow \mathbb{F}[12346]=8 p_{8}^{3}$
$(1,1,1,3,2) \Rightarrow\{12347\} \Rightarrow \beta_{12347}=8 \Rightarrow \mathbb{F}[12347]=8 p_{8}^{3}$
$(1,1,2,1,3) \Rightarrow\{12356\} \Rightarrow \beta_{12356}=8 \Rightarrow \mathbb{F}[12356]=8 p_{8}^{3}$
$(1,1,2,2,2) \Rightarrow\{12357\} \Rightarrow \beta_{12357}=8 \Rightarrow \mathbb{F}[12357]=8 p_{8}^{3}$
$(1,1,3,1,2) \Rightarrow\{12367\} \Rightarrow \beta_{12367}=8 \Rightarrow \mathbb{F}[12367]=8 p_{8}^{3}$
$\mathbb{F}_{5}^{C}=48 p_{8}^{3}$

## When $j=\mathbf{6}$,

$(1,1,1,1,1,3) \Rightarrow\{123456\} \Rightarrow \beta_{123456}=8 \Rightarrow \mathbb{F}[123456]=8 p_{8}^{2}$
$(1,1,1,1,2,2) \Rightarrow\{123457\} \Rightarrow \beta_{123457}=8 \Rightarrow \mathbb{F}[123457]=8 p_{8}^{2}$
$(1,1,1,2,1,2) \Rightarrow\{123467\} \Rightarrow \beta_{123467}=8 \Rightarrow \mathbb{F}[123467]=8 p_{8}^{2}$
$(1,1,2,1,1,2) \Rightarrow\{123567\} \Rightarrow \beta_{123567}=4 \Rightarrow \mathbb{F}[123567]=4 p_{8}^{2}$
$\mathbb{F}_{6}^{C}=28 p_{8}^{2}$

## When $j=7$,

$(1,1,1,1,1,1,2) \Rightarrow\{1234567\} \Rightarrow \beta_{1234567}=8 \Rightarrow$
$\mathbb{F}[1234567]=8 p_{8}^{1} \Rightarrow \mathbb{F}_{7}^{C}=8 p_{8}^{1}$

## When $j=8$,

$$
\begin{aligned}
(1,1,1,1,1,1,1) \Rightarrow\{12345678\} \Rightarrow \beta_{12345678}=1 \Rightarrow \\
\mathbb{R}[12345678]=p_{8}^{0} \Rightarrow \mathbb{F}_{8}^{c}=p_{8}^{0} .
\end{aligned}, ~ \mathbb{F}_{C}=\sum_{j=k}^{n} \mathbb{F}_{j}^{c}=p_{8}^{0}+8 p_{8}^{1}+28 p_{8}^{2}+48 p_{8}^{3}+32 p_{8}^{4}+8 p_{8}^{5} .
$$

### 6.2. The unreliability function of the $\operatorname{CL}(k, n)$.

If $j$ is the number of failed components in the $\mathrm{CL}(k, n)$

1. For each $j=k, k+1, \ldots, n$, find all classes of $\Psi_{c}^{k}$ using the above algorithm of $\mathrm{CC}(k, n)$
2. Find all rotation for every class in $\Psi_{c}^{k}$.
3. Use lemma 5.2.1 to omit all corresponding $X$ from the classes in $\Psi_{C}^{k}$ such that $X \notin \Psi_{L}^{k}$,
4. Compute $\mathbb{F}_{j}$.
5. The unreliability function $\mathbb{F}_{L}=\sum_{j=k}^{n} \mathbb{F}_{j}$.

Example 5.2.1: Find the failure function of the i.i.d. CL $(3,8)$.
If $j$ the number of failed components, omit all states, such that, $d_{1}+d_{j}=2$ or $d_{j-1}+d_{j}=2$, and $d_{i}+d_{i+1} \neq 2: i=1, . ., j-2$,

When $\boldsymbol{j}=\mathbf{3}$,

$$
\begin{aligned}
& (1,1,6) \text { (6, 11) (1, 1) } \Rightarrow \\
& {[123]=\{123,234,345,456,567,678, \text { गz }, 126\}}
\end{aligned}
$$

$\mathbb{F}[123]=6 p_{8}^{5} \quad \mathbb{F}_{3}^{L}=6 p_{8}^{5}$
When $j=4$,

$$
\begin{aligned}
& (1,1,1,5)(5,1,1,1)(1,1,1)(1,1,5,1) \Rightarrow \\
& {[1234]=\{1234,2345,3456,4567,5678,1678,1278,1238\}} \\
& \Rightarrow \mathbb{F}[1234]=7 p_{8}^{4} \\
& (1,1,2,4)(4,1,1,2)(2,11)(1,2,1) \Rightarrow \mathbb{F}[1235]=6 p_{8}^{4} \\
& (1,1,3,3)(3,1,1,3)(3,2,1)(1.2,3,1) \Rightarrow \mathbb{F}[1236]=6 p_{8}^{4} \\
& (1,1,4,2)(2,1,1,4)(4,2,1)(1,4,2,1) \Rightarrow \mathbb{F}[1237]=6 p_{8}^{4} \\
& \mathbb{F}_{4}^{L}=25 p_{8}^{4}
\end{aligned}
$$

When $j=5$,

$$
\begin{aligned}
& (1,1,1,1,4) \Rightarrow\{12345\} \Rightarrow \mathbb{F}[12345]=8 p_{8}^{3} \\
& (1,1,1,2,3) \Rightarrow\{12346\} \Rightarrow \mathbb{F}[12346]=8 p_{8}^{3} \\
& (1,1,1,3,2)(2,1,1,1,3)(3,2,1,1,1)(1,2,1,1)(1,1,3,2,1) \\
& \Rightarrow \mathbb{F}[12347]=7 p_{8}^{3}
\end{aligned}
$$

$$
(1,1,2,1,3)(3,1,1,2,1)(1,3,1,1,2)(2,1,3,1,1)(1,2,3,1)
$$

$$
\Rightarrow \mathbb{F}[12356]=6 p_{8}^{3}
$$

$$
(1,1,2,2,2)(2,1,1,2,2)(2,2,1,1,2)(2,2,2,1,1)(1,2,2,2,1)
$$

$$
\Rightarrow \mathbb{F}[12357]=6 p_{8}^{3}
$$

$$
(1,1,3,1,2)(2,1,1,3,1)(1,2,1,1,3)(3,1,2,1,1)(1,2,1,2,1)
$$

$$
\Rightarrow \mathbb{F}[12367]=6 p_{8}^{3}
$$

$$
\mathbb{F}_{5}^{L}=41 p_{8}^{3}
$$

## When $j=6$,

$$
\begin{aligned}
& (1,1,1,1,1,3) \Rightarrow\{123456\} \Rightarrow \mathbb{F}[123456]=8 p_{8}^{2} \\
& (1,1,1,1,2,2) \Rightarrow\{123457\} \Rightarrow \mathbb{F}[123457]=8 p_{8}^{2} \\
& (1,1,1,2,1,2)(1,2,1,21,1)
\end{aligned} \Rightarrow \mathbb{F}[123467]=7 p_{8}^{2}, ~=\mathbb{F}_{6}^{L}=27 p_{8}^{2} .
$$

When $j=8$,

$$
\begin{gathered}
(1,1,1,1,1,1,1) \Rightarrow \mathbb{R}[12345678]=p_{8}^{0} \Rightarrow \mathbb{F}_{8}^{L}=p_{8}^{0} \\
\mathbb{F}_{L}=\sum_{j=k}^{n} \mathbb{F}_{j}^{L}=p_{8}^{0}+8 p_{8}^{1}+27 p_{8}^{2}+41 p_{8}^{3}+25 p_{8}^{4}+6 p_{8}^{5}
\end{gathered}
$$

### 6.3. The reliability function of the $\mathrm{CC}(k, n)$.

If $j$ is the number of failed components in the $\mathrm{CC}(k, n)$

1. Find $\mathbb{R}_{j}^{C}$.
1.1. If $j=0,1, \ldots, k-1$, then all states are functioning sets, then $\mathbb{R}_{j}^{C}=\binom{n}{j} p_{n}^{n-j}$
1.2. If $M$ is the maximum total number of the failed components that allows the system to function [10] , then

$$
M= \begin{cases}n-[(n / k)], & n \text { is multiple of } k \\ n-1-[(n / k)], & n \text { is not multiple of } k\end{cases}
$$

For $j=k, k+1 \ldots, M$, find the rotations $\left(d_{1}, d_{2}, \ldots, d_{j}\right)$ hold the boundary conditions $\sum_{t=0}^{k-2} d_{i \oplus t}>k-1$ for all $i \in \mathbb{I}_{j}^{1}$, and $n=\sum_{i=1}^{j} d_{i}$.
1.3. Find the corresponding functioning sets $X \in P\left(\mathbb{I}_{n}^{1}\right)$
1.4. Find the class $[X], \beta_{X}$ and then $\mathbb{R}_{j}^{C}$.
2. The reliability, $\mathbb{R}_{C}=\sum_{j=0}^{M} \mathbb{R}_{j}^{C}$

Example 6.1.1: Find the reliability function of the i.i.d. CC $(3,8)$.
$M=8-1-[8 / 3]=5$. The boundary conditions $d_{i}+d_{i \oplus 1}>2$ for all $i \in \mathbb{I}_{j}^{1}$ and $8=\sum_{i=1}^{j} d_{i}$.
When $\boldsymbol{j}=\mathbf{0},\binom{8}{0}=1 \Rightarrow \mathbb{R}_{0}^{C}=p_{8}^{8}$, the only class $[\varnothing]$

When $\boldsymbol{j}=\mathbf{1},\binom{8}{1}=8 \Rightarrow \mathbb{R}_{1}^{C}=8 p_{8}^{6}$, the only class [1]
When $\boldsymbol{j}=\mathbf{2}, \quad\binom{8}{2}=28 \Rightarrow \mathbb{R}_{2}^{c}=28 p_{8}^{6}$, the classes are [12], [13],[14],[15]

## When $j=3$,

$$
\begin{aligned}
& (1,2,5) \Rightarrow\{124\} \Rightarrow \beta_{124}=8 \Rightarrow \mathbb{R}[124]=8 p_{8}^{5} \\
& (1,3,4) \Rightarrow\{125\} \Rightarrow \beta_{125}=8 \Rightarrow \mathbb{R}[125]=8 p_{8}^{5} \\
& (1,4,3) \Rightarrow\{126\} \Rightarrow \beta_{126}=8 \Rightarrow \mathbb{R}[126]=8 p_{8}^{5}
\end{aligned}
$$

## When $j=7$,

$(1,1,1,1,1,1,2) \Rightarrow \mathbb{F}[1234567]=8 p_{8}^{1} \Rightarrow \mathbb{F}_{7}^{L}=8 p_{8}^{1}$

$$
\begin{aligned}
& (1,5,2) \Rightarrow\{127\} \Rightarrow \beta_{127}=8 \Rightarrow \mathbb{R}[127]=8 p_{8}^{5} \\
& (2,2,4) \Rightarrow\{135\} \Rightarrow \beta_{135}=8 \Rightarrow \mathbb{R}[135]=8 p_{8}^{5} \\
& (2,3,3) \Rightarrow\{136\} \Rightarrow \beta_{136}=8 \Rightarrow \mathbb{R}[136]=8 p_{8}^{5} \\
& \mathbb{R}_{3}^{C}=48 p_{8}^{5}
\end{aligned}
$$

When $j=4$,

$$
\begin{aligned}
& (1,2,1,4) \Rightarrow\{1245\} \Rightarrow \beta_{1245}=8 \Rightarrow \mathbb{R}[1245]=8 p_{8}^{4} \\
& (1,2,2,3) \Rightarrow\{1246\} \Rightarrow \beta_{1246}=8 \Rightarrow \mathbb{R}[1246]=8 p_{8}^{4} \\
& (1,2,3,2) \Rightarrow\{1247\} \Rightarrow \beta_{1247}=8 \Rightarrow \mathbb{R}[1247]=8 p_{8}^{4} \\
& (1,3,1,3) \Rightarrow\{1256\} \Rightarrow \beta_{1256}=4 \Rightarrow \mathbb{R}[1256]=4 p_{8}^{4} \\
& (1,3,2,2) \Rightarrow\{1257\} \Rightarrow \beta_{1257}=8 \Rightarrow \mathbb{R}[1257]=8 p_{8}^{4} \\
& (2,2,2,2) \Rightarrow\{1357\} \Rightarrow \beta_{1357}=2 \Rightarrow \mathbb{R}[1357]=2 p_{8}^{4} \\
& \mathbb{R}_{4}^{c}=38 p_{8}^{4}
\end{aligned}
$$

When $j=5$,

$$
\begin{aligned}
& (1,2,1,2,2) \Rightarrow X=\{12457\} \Rightarrow \beta_{12457}=8 \\
& \Rightarrow \mathbb{R}[12457]=8 p^{3} q^{5} \Rightarrow \mathbb{R}_{5}^{C}=8 p_{8}^{3}
\end{aligned}
$$

The reliability function is

$$
\mathbb{R}_{C}=\sum_{j=0}^{M} \mathbb{R}_{j}^{C}=p_{8}^{8}+8 p_{8}^{7}+28 p_{8}^{6}+48 p_{8}^{5}+38 p_{8}^{4}+8 p_{8}^{3}
$$

### 6.4. The reliability function of the $\operatorname{CL}(k, n)$.

If $j$ is the number of failed components in the $\mathrm{CL}(k, n)$, apply the same above algorithm, but add the omitted failed sets from $\Psi_{C}^{k}$ using lemma 5.1.2, and add them to $\Theta_{L}^{k}$ according the value of $j=k, k+1, \ldots M$.

## 7. Conclusion

In this paper, new algorithms to find the reliability and unreliability functions of the consecutive $k$-out-of$n$ : F linear and circular systems are obtained. The failure and the functioning space of the circular consecutive $k$-out-of- $n$ : F system is classified according the parameters $k$ and $n$ into finite pairwise disjoint classes. For the linear consecutive system, boundary conditions are specified to omit some failure states from the failure space of the circular case to achieve the failure space of the linear case, which facilitate the finding the reliability and unreliability functions of the linear case.

## References

[1]. Antonpoulou, I. and Papastavridis, S., "Fast recursive algorithm to evaluate the reliability of a circular consecutive $k$-out-of- $n$ : F system", IEEE Trans. Reliability, vol. 36, pp. 83-84, 1987.
[2]. Bollinger R. C., "An Algorithm for Direct Computation in Consecutive $k$-out-of- $n$ : F Systems", IEEE Trans. Reliability, vol. R-35, No. 5, pp. 611-612, 1986.
[3]. Bollinger, R. C., "Direct Computation for Consecutive $k$-out-of- $n$ : F Systems" IEEE Trans. Reliability, vol. 31, No.5, pp. 444-446, 1982.
[4]. Chao M. T., Fu J. C. and Koutras M. V. "Survey of reliability studies of consecutive $k$ -out-of- $n$ : F and related system", IEEE Trans. Reliability, vol. 44, No. 1, pp. 120-127, 1995.
[5]. Chiang, D. T., and Niu, S.-C., "Reliability of consecutive $k$-out-of- $n$ : F system" ", IEEE Trans. Reliability, vol. 30, No.1, pp. 87-89, 1981.
[6]. Derman C, Lieberman G.J., and Ross S.M. "On the consecutive $k$-out-of- $n$ : F system", IEEE Trans. Reliability, vol. 31, pp. 57-63, 1982.
[7]. Hwang F. K., "Fast solution for consecutive $k$ -out-of-n: F system", IEEE, Trans. Reliability, vol. 31, pp. 447-448, 1982.
[8]. Kossow A. and Preuss W., "Reliability of consecutive $k$-out-of- $n$ : F systems with nonidentical component reliabilities", IEEE Trans. Reliability, vol. 38, No. 2, pp.229-233, 1989.
[9]. Kuo, W.and Zuo M. J., "Optimal Reliability Modeling Principles \& Applications" John Wiley \& Sons Inc., USA, 2003.
[10]. Lambiris, M., and Papastavridis S." Exact Reliability Formulas for Linear \& Circular Consecutive $k$-out-of- $n$ : F Systems", IEEE, Trans. Reliability, vol. 34, pp. 124-126, 1985.
[11]. Malon, D. M., "Optimal Consecutive-2-out-of- $n$ : F Component Sequencing", IEEE, Trans. Reliability, vol. 33, No.5, pp. 414-418, 1984.
[12]. Sfakianakis, M. E., and Papastavridis S. G." Reliability of a General Consecutive $k$-out-ofn: F System", IEEE, Trans. Reliability, vol. 42, pp. 491-496, 1993.
[13]. Shanthikumar, J. G., "Recursive algorithm to evaluate the reliability of a consecutive $k$-out-of- $n$ : F system", IEEE, Trans. Reliability, vol. 31, pp. 442-443, 1982.
[14]. Wei, V.K., Hwang, F.K., and Sos V.T., "Optimal Sequencing of Items In a Consecutive-2-out-of-n System", IEEE, Trans. Reliability, vol. 32, No.1, pp. 30-33, 1983.
[15]. Wu, J. S., and Chen, R. J., "An $\mathrm{O}(k n)$ Algorithm for a Circular Consecutive $k$-out-of- $n$ : F System", IEEE, Trans. Reliability, vol. 41, No. 2, pp. 303-306, 1992.

Imad I. H. Nashwan is a director for Al Quds Open University, Al Wosta Branch -Gaza, Palestine. He received his PhD degree from Ain Shams University in Egypt, MSc degree in Mathematical statistics from Islamic University in Gaza, and BSc in Mathematics from Sana'a University, Yemen.

