
1

The Effect of Horizontal Database Table Partitioning

on Query Performance

Salam H. Matalqa & Suleiman H. Mustafa

 Faculty of Information Technology and Computer Sciences

Department of Computer Information Systems

Yarmouk University, Irbid, Jordan

Salam.matalqah@yahoo.com & smustafa@yu.edu.jo

Abstract

The need for achieving optimal performance for database applications is a primary objective for database designers and a primary

requirement for database end users. Partitioning is one of the techniques used by designers to improve the performance of

database access. The purpose of this study was to investigate the effect of horizontal table partitioning on query response time

using three partitioning strategies: zero partitioning, list partitioning and range partitioning. Three tables extracted from the

Student Information System (SIS) at Yarmouk University in Jordan were used in this research. Variation in table size was used to

determine when partitioning can have an impact (if any) on access performance. A set of 12 queries were run over a database of

three different sizes. The results indicated that partitioning provided better response time than zero partitioning, on the other hand,

range and list partitioning strategies showed little performance differences with the different database sizes.

Keywords:

Table Partitioning, Horizontal Partitioning, Range Partitioning, List Partitioning, Database Performance.

1. Introduction

 Useful, accessible, and timely information has always

been a great power for those who have it and use it

efficiently. As such, gathering, managing, accessing and

analyzing information have evolved to be a critical issue

for the success of any kind of organization. With the

rapid development of information technology, more and

more large-scale application systems will generate vast

amounts of data. Big data or massive data refers to the

amount of data that cannot be captured, managed,

processed, by the current mainstream software [20].

Based on the International Data Corporation (IDC)

results, they show that the data produced in 2008, 2009,

2010 and 2011 by everyone is equal to more than

200GB. By the end of 2012, the amount of data rose

from the TB (1024GB=1TB) level to PB

(1024TB=1PB), EB(1024PB=1EB) and ZB

(1024EB=1ZB) level [21]. By 2020, it is expected that

the whole world generated data size will reach 44 times

today. Consequently, big data tables will bring a great

deal of performance pressures to application systems and

a big risk in database management [19].

All information systems (ISs) such as

telecommunication systems, banking systems,

educational systems, health-care systems, and others

depend on the management of data, and how to deal

efficiently with the huge piles of data. Nowadays, we are

living in an information era with tons of music, photos

and videos. The task of data storing, sharing, organizing,

and manipulating has become a challenge one. Hence,

database management systems are considered the

backbone and the heart of any application in our daily

lives [14].

For any application that is already running in a

production or for any new project that we are starting,

performance is one of the most important aspects that

should be taken into consideration. For database

designers, achieving optimal performance is the primary

objective, while for database end users it is a primary

requirement. Developing and improving database

performance is a cycling activity that should be included

in each development stage. However, no recipe exists for

designing perfect databases, but some techniques and

tips can improve the quality of the design, such as

indexing techniques and query optimization [10].

mailto:Salam.matalqah@yahoo.com

2

One of the most important aspects of physical database

design is table partitioning which has significant impact

on database performance and manageability of data.

Partitioning subdivides a database object (table, an index

or an index-organized table) into smaller pieces. Each

piece of the database object is called a partition which

has its own name, and may optionally have its own

storage characteristics. We divide database objects using

a partitioning key, which is a set of columns that

determine in which partition a given row will be located

or stored.

According to [3], the three major benefits acquired from

partitioning are the high performance (fast query

response time), manageability (divide and conquer

approach) and availability (independency of partitions).

Furthermore backup and recovery operations can be

done more efficiently and effectively with partitioning.

There are three strategies for partitioning tables or

entities: horizontal, vertical or mixed (hybrid).

Horizontal partitioning allows access methods such as

tables, indexes and materialized views to be partitioned

into disjoint sets of rows that are physically stored and

accessed separately. It affects performance as well as

manageability. On the other hand, vertical partitioning

allows a table to be partitioned into disjoint sets of

columns, and since many queries access only a small

subset of columns in a table, vertical partitioning can

reduce the amount of data that needs to be scanned to

answer the query [1].

Mixed or hybrid partitioning is a combination of both

types of partitioning, in which the table is divided into

arbitrary blocks based on the needed requirements. It

consists of horizontal partitioning followed by a vertical

or a vertical partitioning followed by horizontal, when

the schema is not be sufficient to satisfy the

requirements by only one of them [6]. It is the most

complex strategy and needs more management.

Horizontal partitioning is the most commonly used

approach. Oracle offers three fundamental data

distribution methods: range, list and hash. Range

partitioning is the most common type of horizontal

partitioning, which maps data into partitions based on

ranges of values of the partitioning key that we select for

each table.

In comparison, list partitioning is based on specifying a

list of discrete values for the partitioning key that

enables us to explicitly control how rows map to

partitions. It has an advantage in that we can group and

organize unordered and unrelated sets of data in a natural

way.

Finally, hash partitioning maps data to partitions based

on a hashing algorithm that Oracle applies to the

partitioning key that we identify. Each partitioning

strategy has different advantages and design

consideration, such that each strategy is more

appropriate for a particular situation. Figure 1, shows a

simple representation of the three horizontal partitioning

techniques [4].

These three techniques are usually described as one-level

partitioning approach. On the other hand, the three

techniques can be combined in different ways in what

known as composite (multi-level) partitioning.

Combinations include Range-range, range-hash, range-

list, list-range, and others.

There are some suggestions or situations for when it is

more suitable to partition a table. A general advice is to

partition when table size is greater than 2 GB. A

candidate situation for partitioning is when a table

contains historical data so that the new data is added into

the newest partitions [4].

The powerful functionality of Oracle partitioning solves

the problems and negative impacts of big data tables. It

is driven by and depends on business requirements.

However, Oracle somehow does not provide clear

differentiation between query response time measures,

since it needs very huge data set to see the

differentiation. As such, Microsoft SQL Server platform

has been used in this study.

This paper presents the results of investigating the effect

of horizontal partitioning on query performance. Two

strategies of partitioning (namely, range and list

partitioning) have been used and their performance has

been compared with no partitioning. It is organized as

follows: section two presents some related works,

section three presents the methodology used in the study,

section four discusses and evaluates the results, and

finally section five is devoted for the conclusion.

2. Related Work

 Round-robin partitioning (in which every tuple inserted

will be assigned to a different fragment or partition so

that rows will be distributed evenly and in a ring

fashion), hash partitioning, and range partitioning are the

3

most popular horizontal approaches used [12]. In

general, hash based partitions are good for clustering

only when the queries contain equality predicates on the

partitioning attributes. On the other hand, BigTable

presented by [9] and PNUTS presented by [11] use key-

based range partitioning.

Horizontal partitioning or fragmentation using min-term

predicates was first introduced by [7] for distributed

databases. They considered the problem of horizontally

partitioning data on a set of resources. A methodology

was proposed for determining the access parameters that

are performed over different portions of data, and the

concepts required for the determination of the relevant

one were identified. The general partitioning problem

was formulated in three specific application

environments, showing that the solution models require

exactly the concepts and parameters introduced.

Figure 1: Horizontal partitioning techniques: List, Range and Hash [22]

Cheng et al. presented a fragmentation approach in [9]

based on a genetic algorithm (GA) to achieve high

database retrieval performance, by treating horizontal

fragmentation as a travelling salesman problem (TSP).

They also proposed three new operators for GAs. The

experimental results indicated that these operators

outperformed other operators in solving the TSP. The

data partitioning problem was solved by applying this

proposed GA, and the computational study showed that

their GA outperforms well for this application.

Ma et al. presented a heuristic approach in [16] for using

derived horizontal fragmentation, which depends on a

cost model for analyzing the cost of queries. They

wanted to provide a tractable approach to minimize the

query processing costs by performing horizontal

fragmentation and fragment allocation simultaneously.

Some experiments were conducted to verify their

algorithm. The results showed that this heuristic

approach outperformed the traditional approaches in

terms of system performance. But, they observed that the

processing time spent in testing their approach was

similar to that spent in using the traditional approach.

The improvement of performance was not significant,

but for some other database instances and queries, they

expected better performance improvements.

 In the previous research studies, type and frequency of

queries were important for applying partitioning

solutions. However, for a distributed system, these

solutions are not suitable at the initial stage of a database

design. Khan and Hoque have presented a fragmentation

technique in [15] for partitioning tables that can be

applied at the initial stage as well as in later stages of a

distributed database system. This technique depends on

the use of Attribute Locality Precedence (ALP) which

means fragmenting a relation horizontally based on

locality of precedence of its attributes. ALP represents

the value of importance of an attribute with respect to

sites of distributed database. Database designer is

responsible for constructing an ALP table for each

relation of a DDBMS during database design stage.

CRUD (Create, Read, Update, and Delete) matrix and

cost functions are used in combination with the ALP

table. Results showed that for relational databases in

distributed systems, this proposed technique can solve

initial fragmentation problems properly.

 In the design phase of distributed databases, improving

performance is an important aspect to take into

consideration. Horizontal partitioning has an important

impact in achieving this performance need. Distributed

databases are becoming very popular nowadays. In the

view of [6], making proper fragmentation for relations

4

and allocating fragments are not easy tasks. Many

techniques have been proposed by the researchers, such

as using empirical knowledge of data access and query

frequencies, but doing proper fragmentation and

allocation at the initial stage of a distributed database has

not yet been addressed. Bhuyar et al. have proposed a

fragmentation technique in [6] to partition relations

properly at the initial stage for distributed databases

when no data access statistics and query execution

frequencies are available. Their Results were similar to

those of [15]. They demonstrated that the proposed

technique can solve initial fragmentation problem of

relational databases for distributed systems properly.

Ezeife and Barker reviewed the taxonomy of class

models in [13] for the fragmentation problem in the

distributed object database, and presented a

comprehensive set of algorithms for horizontally

fragmenting this taxonomy of class models. Their

approach starts with generating primary horizontal

fragments for a class, based on only applications that

access this class. Next it generates derived horizontal

fragments that arise from primary fragments of its

subclasses, such as its complex attributes (contained

classes), and/or its complex methods classes. Based on

the queries accessing the class, primary horizontal

partitioning was performed using predicates of these

queries.

Derived horizontal partitioning for a class was based on

the horizontal partitioning of another class. The sets of

primary and derived fragments of each class were

combined to produce the best possible fragmentation

scheme. Thus, their algorithms support inheritance and

class composition hierarchies, as well as nesting

methods among objects. They have been shown to have

polynomial time.

Bellatreche et al. presented some algorithms in [5] for

both primary and derived horizontal partitioning. They

discussed the problems of localization of fragments for

queries, and the migration of objects for updates. These

two issues are important aspects for supporting database

operations on a partitioned database. For a given query,

the horizontal fragments that result from this query can

be identified easily with fragment localization, and if we

need to migrate an object form one fragment to another

due to updates, we deal with object migration issues.

Finally they showed the benefits of horizontal

partitioning for query processing.

For object oriented distributed database systems

(OODD), Areed et al. proposed a new algorithm in [2]

for applying horizontal partitioning over these systems.

They applied both horizontal and vertical ideas for

relational systems, such that in the context of horizontal

partitioning of an object model, they identified vertical

partitioning and allocation simultaneously. They used a

cost model to minimize the global fragmentation and

allocation costs, and used simulation to validate the

proposed approach. Compared to most recent affinity-

based horizontal partitioning, the study proved that the

proposed approach was simpler and had less cost.

Silva et al. studied and proposed guidelines in [18] to be

used in XML databases when applying a fragmentation

design algorithm, with the aim of increasing query

processing performance. They used broader aspects that

could be further considered during the fragmentation

design. Experiments were performed over different sizes

of XML databases to assess how data growth impacts the

performance of query processing. Their experiments

showed that there are performance gains obtained from

the fragmentation process for frequent queries, compared

to the results obtained in the centralized environment.

They obtained gains even for queries that did not apply

over fragments. A set of recommendations were

suggested for choosing the best type of horizontal

fragmentation to be applied to a particular XML

databases.

Mahboubi and Darmont worked on XML warehouse

fragmentation in [17]. They proposed the use of derived

horizontal fragmentation over XML contexts. They also

compared the two primary horizontal fragmentation

methods: predicate construction and affinity-based

fragmentation. Their experiments confirmed that derived

horizontal fragmentation improved query response time

significantly, and in all their experiments, the affinity-

based fragmentation clearly outperformed predicate

construction. They claimed that this had never been

demonstrated before as far as they know, even in the

relational context.

3. Methodology

 In this study, a database consisting of three tables was

used to perform and evaluate partitioning strategies. The

three tables represent part of data about courses and

course sections offered at Yarmouk University in Jordan.

A set of SELECT queries were used to determine which

of the two strategies would achieve better performance.

Queries were run over these tables, once without table

partitioning and once with table partitioning.

5

For each partitioning strategy, queries were run three

times over different sizes of tables. By doing so, we

aimed to explore the effect of table partitioning

strategies and table size on query response time.

The dataset used in this study was extracted from the

student information system (SIS) at Yarmouk University

(YU) [21]. Only three tables were selected for this

purpose: the first table contained information about

courses registered by the students at the College of

Information Technology, the second table stored

information about their degree plans and the third table

was used for course sections.

The data was exported to an Excel sheet then imported

to three databases in MS SQL server platform. Figure 2

presents a partial conceptual schema for these three

tables. The tables representing this schema are as

follows:

T1: STUDENT (S_ID, F_Name, L_Name, B_Date)

T2: CORSE (C_ID, C_Name, Credits)

T3: TAKES (S_ID, C_ID, Taken, Prerequisite)

T4: COURSE_SECTION (Sec_ID, Sec_No, Room,

Room_Size, Instructor, Sec_Days, Sec_Time, C_ID)

Initially, each table had about one thousand records.

Then, to show the effect of various partitioning

strategies, the size was increased twice for the two tables

to be partitioned: TAKES and COURSE_SECTION. As

such, three database versions were implemented: The

first version included about one thousand records for

each of these two tables, the second version included

about four thousand records for each, and the third

contained about nineteen thousand records.

The courses table was not partitioned, since it contained

no suitable candidate partitioning keys for Range

partitioning. For TAKES, the student ID attribute (S_ID)

was

used as a range partitioning key, and the attribute Taken

was used as a list partitioning key.

Finally for COURSE_SECTION, the section time

attribute (Sec_Time) was used as a range partitioning

key, and the section days attribute (Sec_Days) as a list

partitioning key. Table 1 and Table 2 show the

distribution of records for each partitioning strategy

using three different table size versions.

The set of queries used in this study are listed in

Appendix I. As Table 3 shows, most queries require

inner joins between two tables or more. They were

designed to retrieve records based on conditions that

combine the partitioning attribute keys. The purpose was

to show which partitioning strategy would provide better

performance for each query in terms of response time.

Some queries, like the third and the sixth, retrieve

records based on conditions that combine partitioning

attribute keys form multiple tables (Inner JOIN

conditions). This was intended to show if Range

partitioning strategy or List partitioning strategy would

be better for each of the two relations: TAKES and

COURSE_SECTION.

The twelve SELECT queries were executed over the

three database versions with different sizes, using the

same table structures and attribute partitioning keys.

Each execution covered the three partitioning strategies:

No partitioning, Range partitioning, and List

partitioning. As shown in Table 1 and Table 2, the

difference between these three experiments was only in

the database size. In the first the database contained

about three thousand records, while in the second and

third executions the size was increased for tables:

TAKES and COURSE_SECTION.

Figure 2: Partial ER diagram extracted from the student registration subsystem at YU

6

Table 1: No of records contained in each partition for the table: TAKES

Table Size

Version

records (No

partitioning)

records (Range

Partitioning (S-ID))

records (List

Partitioning (Taken))

Partition 1 Partition 2 Partition 1 Partition 2

Size 1 1192 609 583 328 864

Size 2 4768 2436 2332 1312 3456

Size 3 19072 9744 9328 5248 13824

Table 2: No of records contained in each partition for the table: COURSE_SECTION

Table Size

Version

records (No

Partitioning)

records (Range

partitioning (S-Time))

records (List

partitioning (S_Days))

Partition 1 Partition 2 Partition 1 Partition 2

Size 1 1130 655 475 647 475

Size 2 4520 2620 1900 2588 1900

Size 3 18080 10480 7600 10352 7600

Average response time (ART), as defined bellow, was

used as measure of performance for comparing the three

partitioning strategies. Response time has been defined

as the elapsed time in milliseconds from the moment that

a query is entered at the interface to the time that the

application indicates the query has completed and results

shown.

 ART = (∑ RT) / n

Where, ART: Average response time, RT: Response

time for each query., i: Query number, and n: Number

of queries.

3. Results and Evaluation

Figure 3 presents the results of executing the queries

using a database of about three thousand records. The

results indicate that partitioning exhibits better

performance in terms of response time than no

partitioning, with about 18-22% improvement. However,

range partitioning and list partitioning provided almost

similar results. This might be attributed to the relatively

small size of database tables used in this query execution

round.

In comparison, when the size of tables being partitioned

was scaled up to more than four thousand records, we

could notice some difference in performance between

range partitioning and list partitioning. As Figure 4

show, range partitioning outperformed list partitioning in

the average response time with about 18% difference.

As in the previous case, both partitioning strategies

provided better response time performance than no

partitioning. Improvement realized was about 15-30%.

When the database was scaled up to about eighteen

thousand records for each table partitioned, the results,

as exhibited in Figure 6, showed no real difference

between range partitioning and list partitioning. What is

also more notable is that the difference in performance

between no partitioning and partitioning is relatively

small. As Figure 5 shows, the average response time of

partitioning provides only about 15-18% improvement

over no partitioning.

There are no other results from previous research to

compare with. One might assume that range partitioning

and list partitioning behave similarly in performance in

view of the kind of database tables used and number of

queries used regardless of the database size.

i = 1

 n

7

Figure 3: Average response time for the three strategies for the first database size (Size-1)

0

5

10

15

20

25

30

35

40

No Partitioning Range Partitioning List Partitioning

Av
er

ag
e

Re
sp

on
se

 Ti
m

e

Figure 4: Average response time for the three strategies for the second database size (Size-2)

0

50

100

150

200

250

300

No Partitioning Range Partitioning List Partitioning

Av
er

ag
e

Re
sp

on
se

 Ti
m

e

Figure 5: Average response time for the three strategies for the third database size (Size-3)

4. Conclusion

Many factors can affect partitioning decisions that

would be taken over database tables, such as size of the

database, type of data, type of queries, frequency of

queries, partitioning attribute keys, etc. The results

reported in this study should be viewed within the kind

of data and tables used, the kind and number of queries

used, and the type of partitioning strategy investigated.

8

The tables used in this study have been extracted from

a database, which means that that we are not dealing

with a full database environment in a real setting.

Generally the results confirm that partitioning

improves query response time over non-partitioning.

Nevertheless, one still should ask how much

improvement is acceptable in view of the overhead cost

which results from partitioning. Given the size of the

tables used, the results do not show significant

improvement with partitioning. The general

implication of this is that partitioning should be applied

for only when we have reasonably large data tables.

Moreover, this study considers only select queries. If

we consider update operations, would an improvement

of some level in performance still be realized? Such

question is important in deciding to go for partitioning.

In comparing Range partitioning strategy with List

partitioning strategy, no real difference was shown in

the results of the study. There is no absolute ultimate

choice or decision for table partitioning for any

database, in terms of type of partitioning and the

selection of partitioning keys for each table. Each

strategy can be useful in specific situations. Range and

List are not comparable for the same partitioning keys

in a certain table, because each is useful and suitable

for specific type of attributes. It might be useful for

further research on this issue to consider a larger

number of tables and queries.

References

[1] Agrawal S., Narasayya, V. and Yang, B.,

"Integrating Vertical and Horizontal Partitioning

into Automated Physical Database Design".

SIGMOD, ACM, Paris, France, pp 359-370, 2004.

[2] Areed M., El-Dosouki, A. and Ali, H., "A heuristic

approach for horizontal fragmentation and

alllocation in DOODB", In Proc. INFOS2008,

Cairo, Egypt, pp. 9-16, 2008.

[3] Baer H., Partitioning in Oracle Database 11g,

Oracle, USA, 2007.

[4] Baer H. et al., VLDB and Partitioning Guide, 11g

Release 2 (11.2), Oracle, USA, 2010.

[5] Bellatreche L., Karlapalem, K. and Simonet A.,

"Algorithms and support for horizontal class

partitioning in object-oriented databases",

Distributed and Parallel Databases. vol. 8, no. 2,

pp.155–179, 2000.

[6] Bhuyar P., Gawande, A. and Deshmukh, A.,

"Horizontal Fragmentation Technique in

Distributed Database", International Journal of

Scientific and Research Publications, vol. 2, no. 5,

pp 1-7, 2012.

[7] Ceri S., Negri, M. and Pelagatti, G., "Horizontal

data partitioning in database design", In Proc.

ACM SIGMOD, Milano, Italy, pp. 128–136, 1982.

[8] Chang F. et al., "Bigtable: a distributed storage

system for structured data", ACM Transactions on

Computer Systems, vol. 26, no. 2, pp 1–26, 2008.

[9] Cheng C, Lee, W. and Wong, K., "A genetic

algorithm-based clustering approach for database

partitioning", IEEE Transactions on Systems,

Man, and Cybernetics, vol. 32, no. 3, pp. 215–

230, 2002.

[10] Cioloca C. and Georgescu M., "Increasing

Database Performance using Indexes", Database

Systems Journal, vol. 2, no. 2, pp 13-22, 2011.

[11] Cooper B. et al., "PNUTS: Yahoo!’s hosted data

serving platform", Proceedings of the VLDB

Endowment, vol. 1, no. 2, pp1277–1288, 2008.

[12] DeWitt D and Gray J., "Parallel database systems:

the future of high performance database

systems", Communications of the ACM, vol. 35,

no. 6, pp 85–98, 1992.

[13] Ezeife C. and Barker K., "A comprehensive

approach to horizontal class fragmentation in a

distributed object based system", Distributed

and Parallel Databases, vol. 3, no. 3, pp 247–

272, 1995.

 [14] Idreos S., "Database Cracking: Towards Auto

tunning Database Kernels". Aan de Universiteit

van Amsterdam, geboren te Lesvos, Griekenland,

2010 (Thesis).

[15] Khan S. and Hoque A., "A New Technique for

Database Fragmentation in Distributed

Systems", International Journal of Computer

Applications, vol. 5, no. 9, pp 20 – 24, 2010.

[16] Ma H., Schewe, K. and Wang, Q., "A Heuristic

Approach to Cost-Efficient Derived Horizontal

Fragmentation of Complex Value Databases", In

Proc. Eighteenth Australasian Database

Conference (ADC 2007), Ballarat, Australia, pp

103-111, 2007.

[17] Mahboubi H. and Darmont J., "Enhancing XML

Data Warehouse Query Performance by

Fragmentation", Proceedings of the 2009 ACM

symposium on Applied Computing, New York,

USA, pp 1555-1562, 2009.

[18] Silva T. et al., "Towards Recommendations for

Horizontal XML Fragmentation", Journal of

Information and Data Management, vol. 4, no.

1, pp 27–36, 2013.

9

[19] Singh S. and Singh N., "Big Data Analytics[C]",

International Con. on Communication,

Information & Computing Technology

(ICCICT), Mumbai, India, pp 1-4, 2012.

[20] Zhu M. and Zhang X., "The Management of Big

Data Tables Based on Oracle Partition

Technology", The 9th International Conference

on Computer Science & Education, Vancouver,

Canada, pp 570-572, 2014.

[21] Yarmouk University 1976, Course Schedule of the

Faculty of Information Techonolgy and Comp.

Sciences. Retrieved December,9, 2014 from:

http://admreg.yu.edu.jo/index.php?option=com_

content&view=article&id=253&Itemid=438

[22]http://docs.oracle.com/cd/E11882_01/serve.112/e2

5523/partition.htm

 Salam H. Matalqa obtained her

M.S degree in Computer

Information Systems (CIS) in June

2015, from Yarmouk University,

Irbid, Jordan, and her B.S. degree

in Computer Information Systems

in January 2009, from the same

university. Her research interests

tend to focus on areas of database systems, information

retrieval and data mining.

Suleiman Hussein Mustafa is a

professor of Information Systems

and is currently the Dean of the

Faculty of Information

Technology & Computer Sciences

at Yarmouk University since

2/9/2012. He got his Ph.D. from

the University of Pittsburgh (USA) in 1986. He worked

in several universities and was assigned several

academic and management positions. He has published

more than thirty papers in a number of research areas

in computer science and information systems including

natural language processing, database and information

retrieval systems, and software engineering.

Appendix I

List of Queries Used in the Study

1- Retrieve course IDs and course names for all

courses that were taken by students whose numbers

are greater than 2010901150.

2- Retrieve course IDs, course names, and

prerequisites for all courses that are still not taken

by students, whose numbers are less than or equal

2010901150.

3- Retrieve course IDs, student IDs and instructors for

all students whose IDs are less than

2010901100 and their course sections start at 8:00.

4- Retrieve course IDs and course names for all

courses that were taken by students whose numbers

are greater than 2010901150.

5- Retrieve course IDs, section IDs and instructors for

all course sections that start at 8:00 on the days of

Sunday, Tuesday or Thursday (separately).

6- Retrieve course IDs, section IDs and rooms for all

courses that were taken by students whose course

sections held on Sunday, Tuesday and

Thursday (together) at 14:00 and onward (after

that).

7- Retrieve course IDs and course names for all

courses that were taken by students, whose IDs are

less than or equal 2010901150.

8- Retrieve course IDs, course names, and course

prerequisites for all courses that were still not taken

by students whose IDs are greater than

2010901150.

9- Retrieve course IDs, student IDs, and instructor

names for all students whose IDs are greater than

2010901175 and their taken-course sections start at

 at 14:00 and onward (after that).

10- Retrieve course IDs, sections and instructors for all

course sections that were held between 12:00 to

14:00, on the days of Sunday, Tuesday or Thursday

(together).

11- Retrieve course IDs, sections, and instructors for

all course sections that start at 8:00 on the days of

Monday and Wednesday (separately).

12- Retrieve course IDs, sections, and rooms for all

courses that were taken by students whose course

sections held on Monday and Wednesday

(together) at 9:00 and before.

http://admreg.yu.edu.jo/index.php?option=com_content&view=article&id=253&Itemid=438
http://admreg.yu.edu.jo/index.php?option=com_content&view=article&id=253&Itemid=438
http://docs.oracle.com/cd/E11882_01/serve.112/e25523/partition.htm
http://docs.oracle.com/cd/E11882_01/serve.112/e25523/partition.htm
http://docs.oracle.com/cd/E11882_01/serve.112/e25523/partition.htm

