
A Mobile Application for Safer-Intelligent
Driving and Vehicle Preventive Maintenance

Using Vehicle OBD Data
Adnan Shaout and Abdur Rafay Mir

The Electrical and Computer Engineering Department
The University of Michigan-Dearborn

Dearborn, Michigan 48128
shaout@umich.edu; armir@umich.edu

Abstract - The purpose of this paper is to develop an
app that could read the vehicle diagnostic trouble
codes real time data through the on-board diagnostics
(OBD-II). A regular driver might not be able to
comprehend all of that data and the use of this app
which could make it confined to only those with the
knowledge of OBD-II. Keeping this mind,
warning/notification feature was added into this smart
phone app which will notify the driver about any
malfunction or parameters breach with a warning sign
and a beep. The goal of this paper is to achieve
maximum awareness among drivers and vehicle
owners. We also aim to make every driver more
educated about their own vehicle and its maintenance
through the use of this technology, which will not only
help them in saving time and money but also makes
vehicles much safer, reliable and fun to drive.

Keywords: OBD II, Mobile Application, Intelligent
Driving, Vehicle Preventive Maintenance

1. INTRODUCTION

A vehicle is a complicated machine which not only
consists of the mechanical components but also a large
variety of electrical sensors, Integrated circuits,
multiple electronic modules and a central processing
unit known as ECM/ECU. This kind of combination
of electrical, electronic and mechanical parts in a
vehicle makes it one of the engineering marvels where
all these parts are connected to each other in one way
or the other. The Engine sensors reads most of the data
and is major source of overall vehicle information
followed by the chassis components such as
suspensions, brakes etc. This information from various
parts of the vehicle goes to the ECM and gets
processed constantly [1] [2].

The In-vehicle information is very critical and
accounts for the overall performance of any vehicle.
When a sensor fails or starts malfunctioning, it

comprises the vehicle’s reliability and safety, and
could also lead to a major mechanical component
failure [2].

Therefore, it is very important to monitor this
information from time to time in order to keep a
vehicle in a good working condition. It not only helps
in preventive maintenance reducing the risk of
mechanical failure but also makes a driver more aware
and educated of the working condition and day to day
performance of his/her car [2].

Unfortunately, most of this information is not
available to drivers at hand and it can only be accessed
by scanning an OBD system [3].

The motivation behind this paper is to provide ease of
access to the vehicles critical information to almost
anyone and everyone without putting any price tag to
the service or needing to visit any auto parts store. We
tend to hear it quite often about the vehicle diagnostics
mishaps by dealerships and mechanics. Sometimes
simple issues or mechanical defects are misdiagnosed
and good parts being replaced for being suspected as
faulty, and eventually customers end up paying a huge
repair bills yet the original issue remains unfixed.
Here, the customer not only loses his valuable time and
money but also undergoes high level of frustration.

The paper is organized as follows: section 2 will
present some background on OBD, section 3 will
present the design of the application, section 4 will
present the OBD-II Modes and Parameter IDs (PIDs),
section 5 will present DCT, sections 6, 7, 8 and 9 will
present the implementation of the system and the
testing result and finally section 10 will have the
conclusion.

2. BACKGROUND

Going before the 1950s, most disclosure of issues in
automotive was accomplished with listening to
abnormal sounds, using hand tools, smelling unusual
odors, some mechanical gages and the rest by hand. As
vehicles became more advanced, we entered into a
new era of the 1960s, where we became more reliable
on advanced instrumentations and devices for testing
and diagnostics purposes [4].

On turning the key into ignition mode these days, the
vehicle dash should flash all lights present in the
information cluster including “Check engine” light or
“Service Engine Soon” light in some other vehicles.
This means that the vehicle has a proper self-
diagnosing system which shall notify the driver in case
of any malfunctions within the vehicle systems. This
early notification by the vehicle is due to the presence
of OBD-II system and helps to not only warn the driver
for any problems but also in protecting the
environment [5].

Recently, in the mobile application market, several
applications have emerged that pair the power of a
mobile device with the information available through
the use of an OBD-II reader. These applications tend
to be directed toward auto enthusiasts, developing
features that concentrate on measuring vehicle
performance and troubleshoot mechanical issues.

Over the last couple years, there's been an explosion
of aftermarket gadgets that allow the OBD-II
connection to transmit useful stats. Tools were sold in
the market targeting one feature per device such as
instant fuel economy reader, engine speed reader, fault
codes reader, temperature reader, vehicle speed reader
etc. However, in this project, we are coupling all these
different information into one single device with the
help of Android smart phone technology.

There are currently few devices in the market that
accomplish the function of reading trouble codes from
the vehicle. They cost of these devices range from $50
to $300, but they only deal with reading and clearing
the error codes. AutoZone is nation’s largest chain of
automotive spare parts stores; they offer free service
of checking error codes from the vehicle using the
same devices. There are also other smart phone
applications in the market; the most popular of them is
“Torque” app available for all compatible
smartphones for $6. It is a commercial app with over
1 million buyers already and counting, it can also
perform almost all of the functions as our application;
however we still have some additional features that are
completely unique from the current market as will be
shown later. Table 1 shows a brief comparison of

different products with their respective attributes and
features.

3. DESIGN & IMPLEMENTATION

Figure 1 shows the basic workflow of the application
where vehicle ECU sends the data to the OBD-II port,
at this time, both vehicle’s OBD-II port and OBD-II
reader exchange data. In this process, OBD-II reader
requests the vehicle OBD-II to transmit the data and
then reader forwards it to the android software. The
final output can be seen on the Smartphone device
which will display the data coming from the engine
ECU to the user.

Figure 2- Basic design flowchart

The basic design of the project is shown in the form of
a flowchart in figure 2.
The process starts with “Start Live Data” link which
then triggers the OBD gateway/services on.
The application then tries to access the external
hardware Bluetooth OBD scanner/adapter. If the
Bluetooth adapter is already paired with the smart
phone, the application continues to run, otherwise all
the services are stopped and app is closed.
If pairing is already done, then the software starts
receiving raw data in the form of bytes through OBD
port. This raw data is organized in queue of different
jobs. “ObdCommandJob” refers to the functions of
our application such as engine speed, coolant
temperature etc., all queued to be interpreted and
displayed on the screen.
The data then goes to the decision zone where value of
the function is confirmed, and with a right value, data
goes to execute zone and gets updated on the screen.
The process can also be stopped by the external
manual operation shown as “Stop Live Data” in the
flowchart.
There are a huge number of sensors (nodes), for
example, different engine component sensors,
transmission sensors, ABS sensors etc. Each one of
those speaks with a host processor of the vehicle by
means of a controller area network (CAN) Controller
[4] [6].

4. OBD-II Modes and Parameter IDs (PIDs)

A PID is a special kind of command/code that OBD
assigns to a particular set of data. To exchange data
with Engine control unit (ECU) through OBD-II, the
OBD-II needs to send proper PID to the ECU, and in
return ECU responds back to that information request
in the form of bits and bytes. Those bytes are mostly
displayed in the form of hexadecimal format [6].
The OBD-II standard does not oblige auto makers to
execute all PIDs. It doesn't even give a base for a few
modes, for example, Mode 1 and Mode 2 PIDS. On
the other hand, many makers use the most widely
recognized ones, for example, speed and RPM of
vehicle [6].
Since there are diverse classes of solicitations, the
OBD-II standard splits the PIDS up into various
modes. First OBD protocol SAE J1979 details a record
of 9 different diagnostic test modes [6]. Table 2 shows
various modes of diagnostic tests.

Table 2- Diagnostic Test Modes [6]

Mode 1 PIDs in this category display current real time
data such as the results of the engine RPM
sensor.

Mode 2 When a fault or malfunction occurs, a snap
shot of all mode 1 sensors are taken. This
snap shot is known as a freeze frame. To
access each individual sensor, you use the
mode 2 requests

Mode 3 Sending a mode 3 request, the ECU responds
with a list of DTCs stored if any.

Mode 4 Sending a mode 4 request, the ECU clears the
DTCs stored and turns off the malfunction
indicator lamp (MIL) if on.

Mode 5 Test results from oxygen sensor monitoring

Mode 6 Test results from other types of tests

Mode 7 Show pending Diagnostic Trouble Codes

Mode 8 Control operation of on-board system

Mode 9 Responds with the vehicles identification
number (VIN).

To send a request to the ECU you must specify the
mode and the PID. So for example, if you want to view
the current engine RPM, you would send a 010Ch
(hexadecimal) query to the ECU. The ECU would then
respond with a few bytes of data for the response. If
you wanted to see the engine RPM stored value when
a fault occurred last on the vehicle, you would instead
send a mode 2 query, 020Ch.
As you can see the query or command to send to an
ECU is a combination of the mode and the relevant
PID. All requests must adhere to this request format.

5. Interpreting Diagnostic Trouble Codes (DTCs)

“There are four main types of DTC codes defined by
the SAE standards. These are as follows:
First digit will be:
• Powertrain Codes (P codes) starting with 0 - 3
• Chassis Codes (C codes) starting with 4 - 7
• Body Codes (B codes) starting with 8 - B
• Network Codes (U codes) starting with C – F [6].”

These codes distinguish about where or what
framework the deficiency occurred. The powertrain
codes are the most widely recognized as they are
mostly generic and engine related codes [6].

Figure 9 shows the arrangement of vehicle trouble
codes. They are made of 5 digits. The digits are in
hexadecimal order. The first digit of any trouble codes
distinguishes the sort of code like to identify whether
the code is chassis code or body code or a powertrain.
In figure 9, you can see the 5 digits that distinguish
what class of codes it has a place with. The other 4
digits in the code distinguish other data. For instance
the second digit distinguishes that it is a standard SAE
characterized code while the third digit recognizes
what framework created the issue [6].
.

Figure 3- Example of Diagnostic Trouble Code

The code in figure 3 means "Evaporative Emission
Control System Vent Control Circuit Open" which is
a trouble code for malfunctioning exhaust system. We
also see that it is a powertrain code as it starts with the
letter “P” which is a standard code for all automobiles
characterized by the SAE. Second digit is zero which
is supposed to be manufacturer specific code. Then
comes the third digit which as a value 4 to it and third
digit is always an assigned to the list of vehicle
components shown in figure 9. In this particular code
for instance, it shows that the issue lies within the
Auxiliary Emissions Control. The ECU reacts with 4
hexadecimal bytes for each one code. The principal
byte is in charge of parts A and B in the code above
[6].
The list in the previous page gives the ranges of the
first digit for each type of code. This concludes the
most important parts of OBD-II that I needed to further
research in order to gain an understanding of how to
work with it. However, in this project, we are deriving
our design source code from an open source android
studio library that will automatically integrate all the
PID and CAN data into the device. Modifications and
debugging is still required in order to run the
application. Also, please note that the open source
library data only helps to interpret the data deriving
from the vehicle OBD.

6. Implementation

Since we wanted to develop an android application,
the logical language to choose was JAVA because the
android SDK as all of the android APIs are built on top
of the JAVA programming language.
In order to communicate with the OBD-II device we
used the OBD-android API wrapped around the OBD-
JAVA API. These APIs have helper classes and
methods that can be accessed to enable receiving and
making sense of the data from the OBD-II adapter.
Abstract class ObdCommand.java is the base class
representing all incoming OBD commands. All the
subclasses of ObdCommand like
EngineLoadObdCommand.java are specific to
different OBD commands and allow properly
interpreting the OBD data.

ObdGatewayService.java is an android background
service that listens for incoming OBD data and routes
it to the specific handler for parsing and presenting to
the user interface on MainActivity.

In this paper, we used Android Studio as our platform
for developing this Android application. Android
Studio is an integrated development
environment (IDE) for the Android platform and is
free for all the developers. Based on JetBrains' IntelliJ
IDEA software, the Studio is designed specifically for
Android development. Major advantage of using this
platform was the ease in debugging the application.
Android Studio enables you to debug apps running on
the emulator or on an Android device. With Android
Studio, we can a) Select any device to debug our app
on b) View the system log, c)Set breakpoints in your
code, d) Examine variables and evaluate expressions
at run time, e) Run the debugging tools from the
Android SDK, f) Capture screenshots and videos of
your app [7][8].

7. Project Application functions

This app is designed to read and display the following
information in real time to the driver. Table 3 shows
the list of all functions used in this application. All
these functions have been tested in different
environments and setups, which is explained in detail
in the next section.

Table 3: List of functions [9]
Compass Integrated in the app to show the

direction of vehicle

Speed Shows the speed and warns/notifies if
reaches 75 mph

Engine RPM It is a measure of crankshaft rotation of
the engine per minute

Engine Coolant
Temperature

It is used to determine the temperature
of the engine coolant

Engine Load Engine load is a measure of work being
done by an Engine

Engine Runtime Engine Runtime is a measure of time
from the start of the engine until engine
shut off

MAF It is used to find out the mass flow rate
of air entering a fuel-injected internal
combustion engine

Air-Fuel
Equivalence

Ration

Air–fuel ratio (AFR) is the mass ratio
of air to fuel present in
a combustion process

Throttle Position This function tells us the exact throttle
position of the vehicle at any given
time

Timing Advance It is the measure of ignition spark fired
by the spark plugs at a given time

Ambient Air
Temp

Ambient air temperature is actually an
outside Air Temperature

Air Intake Temp Air intake temperature is actually an air
temperature inside the intake manifold,
should be very close to Ambient air
temperature

Barometric
Pressure

It is actually an atmospheric pressure of
the vehicle’s surroundings

Intake Manifold
Pr

Intake Manifold Absolute Pressure
(MAP) displays manifold pressure.
Normally, it should always be in a state
of vacuum

Fuel Economy The fuel economy of an automobile is
the fuel efficiency relationship
between the distance traveled and the
amount of fuel consumed by the
vehicle

Fuel Level Fuel Level Input is the percentage of
fuel with 0% equaling tank is full and
100% when tank is empty

Fuel Pressure Fuel rail pressure is the fuel pressure at
the engine when reading in reference to
atmospheric pressure

Trouble Codes A trouble code is an alphanumeric
value that corresponds to a particular
type of fault in a vehicle

7.1 ADDITIONAL FEATURE

Figure 4 – The flowchart design of the
warning/notification features.

In this paper, we have added some additional features
that outstands it from the other similar apps available
in the market today. The addition of “If- then” feature
makes this app more users friendly and allows regular
drivers who may not have any knowledge of
automobile engines to understand the engine condition
of their vehicles. This is achieved by introducing the
Warning/notification feature/function that lets the
driver know if any of the above listed functions
exceeds the recommended values of normal operating
condition. For example, if the fuel level gets below 20
percent, the driver will immediately be notified of the
low fuel warning, similarly if the ignition timing
advance value gets out of the set limits, the driver will
be notified that the vehicle spark timing/ignition is
malfunctioning and that its time for a tune up. Figure
4 shows the flowchart design of warning/notification
feature which uses if-else code.

i- Warning/Notification Function: This
function/feature of this app will read and
displays the warning notification with a

sound for any the following functions reading
out of spec.

ii- Engine RPM: When the engine RPM
exceeds 6000 rpm, the driver will be notified
it as a warning, because it can cause wear and
tear of the other mechanical parts in the
vehicle.

iii- Speed: When the vehicle crosses 75 MPH,
the driver will be notified to slow down as it
could be dangerous

iv- Engine Load: In this app, the set limit of
engine load is 90 percent, once it gets
crossed, the app will pop up a warning
notification. Increased engine load can cause
severe wear and tear on the engine and can
even damage the engine

v- Engine Coolant temp: Engine coolant
temperature is directly associated with
overall engine temperature. If this exceeds
the set limit, the driver will be notified of the
overheated engine and advised to stop the
engine.

vi- Timing advance: If the ignition timing
advance value gets out of the set limits, the
driver will be notified that the vehicle spark
timing/ignition is malfunctioning and that its
time for a tune up.

vii- Trouble Codes: The driver shall be notified
every time a trouble code pops up. This app
will also show the definition of the code so
the driver gets aware of the issue
immediately.

8. GRAPHICAL INTERFACE

The GUI contains grouping of related fields/functions
into 4 different groups and each group is named and
assigned with an icon. After clicking on the icon, the
list of fields/functions will appear at the bottom. Here
is what it looks, see below pictures

Figure 5 shows the home screen of the application. As
you can see, only 4 fields
are shown here, namely:

Figure 5- New Interface
main screen

1) Engine Information
2) Temperatures &
Pressure
3) Fuel Information

4) Warnings/Notifications
For example, figure 6 shows the real time data of
different temperatures and pressures of the vehicle.

Warning/Notifications is a new feature being added
into this app. This feature will use the “If then” values
and will display the warning or notify the driver if any
real time value exceeds the recommended value
(recommended by auto manufacturer).

9. TESTING

Testing is the last and most important part of any
project. In this project, we have conducted testing at
multiple stages with certain features of the application
being tested at each stage. All features of the app have
been tested multiple times with different hardware set
up.

9.1- Hardware Testing

Our hardware includes smart phones, Bluetooth OBD-
II scanner/adapter, and vehicle OBD-II port and test
vehicles.

a- Smart Phones: Smart phone used in this
project is a Nexus 5 Android Smart phone
that runs Android software 4.4.4 Kitkat
version. Two different Nexus 5 devices are
used and prior to running the application,
devices and their Bluetooth connectivity
were tested as fully functional and OK for use

b- Bluetooth OBD-II Scanner: In this paper,
we used an ELM327 OBD-II scanner/adapter
sold by BAFX [10]. To ensure the accuracy
of this device, we purchased two of these and

Figure 6- Temperature & Pressure Information screen

compared the results of both in order to verify
the accuracy of the scanner. Our scanners
were tested and found to be OK.

c- Test Vehicles: Since the goal was to develop
an app that is robust enough to be run on
different platforms and different vehicles,
multiple test vehicles were used as part of the
testing plan. These vehicles included 2012
Ford Taurus, 2012 Nissan Altima, 2002
Toyota Camry, and 1998 Honda Accord.

d- OBD-II Ports: Prior to final tests on the
above vehicles, their OBD-II ports were test
by visual inspection and electrical
functionality. These ports and pins needs to
be assured as functional, as sometimes ports
do get clogged with debris and carbon. In
addition to that, I have also visually inspected
the back of the connector to make sure that
all of the wires running from the contacts to
their respective destinations are intact.
Before proceeding for additional tests, they
were confirmed to be OK and fully
functional.

9.2 - Software Testing

Android Application testing: The application has
been tested on multiple devices and vehicles. In this
section, we will present all our test results conducted
on different vehicles

Test Results

a) Figure 7 shows the test results a 2011 Ford
Taurus SEL (3.5 l Engine/ Front wheel
drive)

 Test result conclusion for Ford Taurus: All
functions are tested OK and showed accurate readings.
Since there was nothing wrong with this particular
vehicle, no function value exceeded the assigned
parameters and therefore no warnings/notification or
trouble codes were found in this vehicle.

b) Figure 8 shows test result of a 2000 Honda
Accord

Test results conclusion for Honda Accord:

Figure 7- Test results of Ford Taurus

No
Codes
found

Figure 8- Test results of Honda Accord

As we can see in the figure 8, this vehicle has a trouble
code P0420. DTC number reads MIL is ON1 Code,
which means Malfunction indicator lamp is ON and it
has 1 number of code. Then once you click on the code
at the bottom, a dialog box pops up and it reads the
code definition, as “P0420 – Catalyst System
Efficiency Below Threshold”.

10. CONCLUSION

The main goal of this paper was to develop an app that
could read the vehicle diagnostic trouble codes, later
additional goals were added, i.e. to include the OBD-
II real time data. Thereafter, it is realized that a regular
driver might not be able to comprehend all of that data
and the use of this app could be confined to only those
with the knowledge of OBD-II. Keeping this mind,
warning/notification feature was added into this app
which will notify the driver about any malfunction or
parameters breach with a warning sign and a beep.
This paper has demonstrated a very unique and high
level design from connecting an Android Bluetooth
with OBD-II Bluetooth adapter to reading the critical
vehicle data.
Future work on this app will include integration of
GPS into the real time data, so that a driver can see the
vehicle’s performance at specific time and location
using GPS coordinates. Also, we would like to add the
gas station tracker into this app, so when the fuel level
is low, the app shall locate the nearest gas station and
notify the driver.

REFERENCES

[1] Engine control unit- Wikipedia, the free
encyclopedia Source:
http://en.wikipedia.org/wiki/Engine_control_unit
[2] List of sensors- Wikipedia, the free encyclopedia
Source: http://en.wikipedia.org/wiki/List_of_sensors
[3] On-board diagnostics - Wikipedia, the free
encyclopedia Source: en.wikipedia.org/wiki/On-
board_diagnostics
[4] Creating a Wireless OBDII Scanner- A Major
Qualifying Report Source:
https://www.wpi.edu/.../FinalPaper.pdf [8] OBD by
EPA Source: http://www.epa.gov/obd/questions.htm
[5] OBD-II published journal Source:
eecs.ucf.edu/.../g09/.../originalreport.pdf
[6] An Embedded Automotive Monitoring Device
Source:
http://automon.donaloconnor.net/files/fypreport.pdf
[7] Android API open source library for OBD
Source: https://github.com/pires/android-obd-reader
[8] Android Studio | Android Developers Source:
https://developer.android.com/sdk/installing/studio.ht
ml
[9] OBD2 PID Reader Source:
http://digitalcommons.calpoly.edu/cgi/viewcontent.cg
i?article=1089&context=cpesp
[10] ELM327 Bluetooth scanner/reader by BAFX
Source: http://www.bafxpro.com/bafx-products-tm-
pic18f2480-bluetooth-obd2-scan-tool-for-check-
engine-light-and-other-diagnostics-for-android-only

