
PAPER_ID: 325

Optimization of position finding step of PCM-

oMaRS Algorithm with statistical information
Ammar Suhail Balouch

.

Associate Prof. Dr. Eng.

Database Research Group

Department of Computer Science

University of Rostock

Abstract: The PCM- oMaRS algorithm guarantees the maximal reduction steps of the computation of the
exact median in distributed datasets and proved that we can compute the exact median effectively with
reduction of blocking time and without needing the usage of recursive or iterative methods anymore. This
algorithm provided more efficient execution not only in distributed datasets even in local datasets with
enormous data. We cannot reduce the steps of PCM- oMaRS algorithm any more but we have found an idea
to optimize one step of it. The most important step of this algorithm is the step in which the position of exact
median will be determinate. For this step we have development a strategy to achieve more efficiency in
determination of position of exact median. Our aim in this paper to maximize the best cases of our algorithm
and this was achieved through dividing the calculation of number of all value that smaller than or equal to
temporary median in tow groups. The first one contains only the values that smaller than the temporary
median and the second group contains the values that equal to the temporary median. In this dividing we
achieve other best cases of PCM- oMaRS algorithm and reducing the number of values that are required to
compute the exact median. The complexity cost of this algorithm will be discussed more in this article. In
addition some statistical information depending on our implementation tests of this algorithm will be given
in this paper.

Keywords: Median, Parallel Computation, Algorithm, optimization, Big Data, Evaluation, Analysis,
complexity costs.

——————————  ——————————

1 INTRODUCTION

The goal of distributed aggregation is to compute

an aggregation function on a set of distributed val-

ues. Typical aggregation functions are max, sum,

count, average, median, variance, kth smallest, or

largest value, or combinations thereof. The most

problematic aggregation is in the distributed compu-

tation of holistic aggregation function, in especially

of distributed enormous data sets. Such data is like

streaming data from network-sensors. The database

community classifies aggregation functions into

three categories: distributive, algebraic and holistic.

Combinations of these functions are believed to sup-

port a wide range of reasonable aggregation queries.

PCM- oMaRS algorithm [20] shed a new light on

the problem of distributed computation of exact me-

dian for general n distributed datasets. PCM- oMaRS

solved the problem of exact median computation

without using recursion or iteration steps and blocks

determinate data only in one time by one step, actu-

ally by the last step if it is necessary. This algorithm

consists of three major phases like as MapRaduce

principle and depends on mathematical definition of

median.

The reduction of blocking time of streaming data

and of complexing cost is a recent growing interest

in distributed aggregation, thanks to emerging appli-

cation areas such as, e.g. data mining or sensor net-

works. Therefore we focus us on the optimization fa-

cilities of one step of PCM- oMaRS algorithm. With

this optimization strategy we can simply see that this

strategy makes this step more efficient. Then we

show that the complexity of this algorithm is in worst

case the worst case of a quick sort algorithm.

This article is organized as follows: In section 2

we list related works with a short summary. A short

introduction of PCM-oMaRS algorithm is to find in

section 3. Optimization strategy of PCM-oMaRs al-

gorithm is presented in section 4. The complexity of

PCM- oMaRS algorithm will be shown in section 5,

in addition we discus about some statistical infor-

mation concerning implantation of PCM- oMaRS

and at the end we summarize the most important

points of the article in last section.

2 RELATED WORK

Actually the research of distributed algorithm to
determine the median is for more than 40 years ac-
tive. This problem hat attracted many researchers. In
1973 is presented a new selection algorithm named
PICK [1]. This algorithm proved a new lower bound
for the cost of selection. The first linear algorithm is
developed by Blum et al. [2] in 1973, in 1975 [3] has
presented a new selection algorithm which is shown
to be very efficient on the average, both theoretically
and practically and Schönhage et al. [4] presented
another algorithm which performs fewer compari-
sons on the worst case in 1976. In 1982 considered
Rodeh [5] on the problem of computing the median
of a bag of 2n numbers by using communicating pro-
cesses, each having some of the numbers in its local
memory. This algorithm described the distributive
median problem as series of transformations. Marber
et al. [6] in 1985 considered the problem of selecting
the kth largest element in a set of n elements distrib-
uted arbitrarily among the processors of a Shout-
Echo network. In 1987 developed Chin et al. [7] an
improved algorithm for finding the median distribu-
tive. He embedded in the first part of its algorithm
the Rodeh’s algorithm, in the second part of its algo-
rithm reduced the problem size by one quarter with
three messages instead of reducing the problem size
by half with two messages. With the third part of its
algorithm resolved the problem of choosing the ini-
tiator. Santoro et al. [8] minimized with its algorithm
the communication activities among the processors
and considered the distributed k-selection problem.
[9] shows the existence of small core-sets for the
problems of computing k-median and k-means clus-
tering for points in low dimension and get an (1+ε)-
approximation. Kuhn et al. in 2008 [10] presented a
k-selection algorithm and proved that distributed se-
lection indeed requires more work than other aggre-
gation function. In this article has shown that the 𝑘𝑡ℎ
smallest element can be computed efficiently by
providing both a randomized and a deterministic k-
selection algorithm. [11] Considered the k-median
clustering on stream data arriving at distributed sites
which communicate through a routing tree. They
proposed a suite of algorithms for computing (1+ε)-
approximation k-median clustering over distributed
data streams. The algorithms are able to reduce the
data transmission to a small fraction of the original
data. In [12], the author shows a unified framework
for constructing core-sets and approximate cluster-
ing for such general sets of functions.

In [13] has shown an algorithm that produces
(1+ε)α- approximation, using any α-approximation
non-distributed algorithm as a subroutine, with total
communication cost. There are many others works
in this field, [14] [15] [16] [17] [18]. All of these re-
searches have used the iteration, recursion or ap-
proximation in their steps. Garrigues et al. present in
[19] a new grained distributed median randomized
algorithm. This paper show that this algorithm is ef-
ficient on networks containing 𝑂(𝑁) (up to 𝑁 4⁄ −
1) processing units running in parallel. This algo-
rithm focuses to reduce the number of elements to
process after each iteration. Tsmots et al. present in
[21] a structure of the median filter device. Median
filters are widely used for smoothing operations in
signal, speech, and image processing. The conveyer
device with parallel implementation of algorithms is
widely used for quick median filtering. Median cal-
culation on the basis of completely parallel devices
is redundant. Using streaming-conveyor devices re-
duce this redundancy. The calculation of the median
in this devices is reduced to the execution pairwise
sequence comparison and permutation of numbers.

3 PCM- OMARS ALGORITHM

In this section we will give a short introduction
of PCM- oMaRS algorithm [20]. At first we repre-
sent the general mechanism of this algorithm
through the following sub section.

3.1 Illustration of PCM- oMaRs algorithm
mechanism
Figure 1 shows an abstract of the mechanism of

our algorithm cleared by one sequence. In this figure
we can see that the finding of position of exact me-
dian depending on the value of sclenD and of sgenD
in which will be known to which direction must the
position be moved from the position of the tempo-
rary median to achieve the position of exact median

Figure 1: Abstract of PCM- oMaRS algorithm mechanism

3.2 PCM- oMaRS Algorithm steps
The steps of PCM- oMaRS algorithm are repre-

sented in the following:

If the size of the sequence Ord is EVEN then the

temporary median value is the first/second value of

the two middle values of Ord instead to compute the

average of both middle values. 𝑀𝑒𝑑𝐿𝑇 must stay one

of the existing values not new calculated value.

The following step is the position finding step.

This step will be optimized in the following section

of this paper.

For more detailed information about PCM-

oMaRS algorithm see [20].

3.3 Example of Application
Let us have the following Datasets after ordering:

𝐷1 = (3,5,11,27,30),

𝐷2 = (1,7,27,27,29),

𝐷3 = (10,18,27,30,32)

In the first step we have to get 𝑴𝒆𝒅𝑻 a tempo-

rary median. 𝑴𝒆𝒅𝑻 is the median of 𝑂𝑟𝑑-set in

which contains ordering all Minimal, Maximal and

Median values of each Dataset.

The minimal, maximal and median values for

each dataset is as following:

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷1 = {3,11,30}
𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷2 = {1,27,29}

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷3 = {10,27,32}
Then the ordered set of them is

𝑂𝑟𝑑 = (1,3,10,11,27,27,29,30,32)

And the median of 𝑂𝑟𝑑 is the temporary median

𝑴𝒆𝒅𝑻 and equal to 11.

𝑀𝑒𝑑𝑇 = 27
Now we start with step 4. We calculate cgnD1,

cgnD2 and cgnD1 (number of all values that greater

than 𝑀𝑒𝑑𝑇 of each dataset respectivelly) as follow-

ing:

𝑐𝑔𝑛𝐷1 = |{30}|, 𝑐𝑔𝑛𝐷2 = | {29}|,
𝑐𝑔𝑛𝐷3 = |{30, 32}|

Now the number of all values that greater than

𝑀𝑒𝑑𝑇 in all datasets is scgnD:

𝑠𝑐𝑔𝑛𝐷 = 1 + 1 + 2 = 4
On the other hand we calculate now the number

of all values that smaller than or equal to 𝑀𝑒𝑑𝑇:
𝑐𝑙𝑒𝑛𝐷1 = |{3,5,11,27}|,

𝑐𝑙𝑒𝑛𝐷2 = |{1,7,27,27}|,
𝑐𝑙𝑒𝑛𝐷3 = |{10,18,27}|

That means, the number of all values that smaller
than or equal to is sclenD:

𝑠𝑐𝑙𝑒𝑛𝐷 = (4 + 4 + 3) − 1 = 10
(-1) is because we do not need to take the tempo-

rary median itself into consideration. That means,
actually instead of counting clenD2 as

𝑐𝑙𝑒𝑛𝐷2 = |{1,7,27,27}|
We count clenD2 as

𝑐𝑙𝑒𝑛𝐷2 = |{1,7,27}|
Now we have the case:

𝑠𝑐𝑙𝑒𝑛𝐷 > 𝑠𝑐𝑔𝑛𝐷
We start now with step 5 of PCM- oMaRS algo-

rithm
MedLP = ((sclenD - scgnD)/2)

MedLP = (10 – 4)/2 = 3
Now we know that the position of exact median

is to find in the left side of temporary median in 3
position. We get now LtD, the sequence that contains
maximum 3 largest number from each dataset
smaller than or equal to 𝑀𝑒𝑑𝑇 differencing 𝑀𝑒𝑑𝑇
self.
Max 3 greatest Nrs of D1≤ 27(𝑀𝑒𝑑𝑇) are 27,11,5
Max 3 greatest Nrs of D2≤ 27(𝑀𝑒𝑑𝑇) are 27,7,1
Max 3 greatest Nrs of D3≤ 27(𝑀𝑒𝑑𝑇) are 27,18,10

Then LtD is as following

𝐿𝑡𝐷 = (27,27,27,18,11,10,7,5,1)
The exact median is now

𝑀𝑒𝑑𝐸 = 𝐿𝑡𝐷[3] = 27
The value 27 is really the exact median because

the number of all values that greater than 27 is equal
to the number of all values that smaller than or equal
to 27 minus 1 (the median itself).

In the following sections we focus on the optimi-
zation of PCM- oMaRS algorithm and its complex-
ity cost, in addition we discus some statistical infor-
mation of our implementation.

4 OPTIMIZATION OF PCM- OMARS

ALGORITHM

The single step in which we can implement an op-
timization is the step 5 of PCM- oMaRS algorithm.
In this step we can apply other computation strategy.
This strategy makes a brilliant optimization of this
algorithm. This Optimizations step will illustrate in
the following sub section.

4.1 Position Finding Optimization
In the step 5 of PCM- oMaRS algorithm we find

the relationship of position determination in tow
cases. The first one is if 𝑠𝑐𝑙𝑒𝑛𝐷 greater than 𝑠𝑐𝑔𝑛𝐷.
The second case is if if 𝑠𝑐𝑙𝑒𝑛𝐷 smaller than 𝑠𝑐𝑔𝑛𝐷.
For the second case we could not find any possiblity
of optimization but for the first case we have found
that we can optimize this case with clever steps.
𝑠𝑐𝑔𝑛𝐷 is the number of all values that greater than
the temporary median and 𝑠𝑐𝑙𝑒𝑛𝐷 is the number of
all values that smaller than or equal to temporary me-
dian.

Now we make the change. Instead to calculate the
number of all values that smaller than or equal to
temporary median, we calculate the number of all
values that smaller than the temporary median and
the number of all values that equal to the temporary
median in 𝑠𝑐𝑙𝑛𝐷 and 𝑠𝑐𝑒𝑛𝐷 respectivelly. That
means, the fourth step will be shown as following:

In this case we can see simply that if the position
MedLP smaller than or equal to 𝑠𝑐𝑒𝑛𝐷 then we do
not need to make any other computations to get the
exact median. In this optimization step we make this
case belong to the best cases of PCM- oMaRS algo-
rithm. That means, the fifth step is represented as
following:

In this optimization strategy is to remark too that
if the MedLP greater than scenD then instead of
sending all sequences of datasets to send back max-
imum MedLP values smaller than or equal to tempo-
rary median, the algorithm sends all datasets to send
back maximum (𝐌𝐞𝐝𝐋𝐏 – 𝐬𝐜𝐞𝐧𝐃) values smaller
than temporary median. This step of our optimiza-
tion reduce too the number of values that will be
sorted to get the exact median. The other cases of
this step remain unchanged as following:
 The last case of this step is simplest one and present

in the following:

In the following section we represent the new
cases map after executing the presented optimization
strategy.

4.2 Example of Application with the
Optimization

Let us now apply our optimization of the previous
example to clear the efficiency. Let us start with step
4 the calculation of cgnD1, cgnD2 and cgnD1 stay
unchanged as following:

𝑐𝑔𝑛𝐷1 = |{30}|, 𝑐𝑔𝑛𝐷2 = |{29}|,
𝑐𝑔𝑛𝐷3 = |{30, 32}|

Where the number of all values that greater than
𝑀𝑒𝑑𝑇 in all datasets is scgnD:

𝑠𝑐𝑔𝑛𝐷 = 1 + 1 + 2 = 4
Now we calculate now the number of all values

that only smaller than 𝑀𝑒𝑑𝑇:
𝑐𝑙𝑛𝐷1 = |{3,5,11}|, 𝑐𝑙𝑛𝐷2 = |{1,7}|,

𝑐𝑙𝑛𝐷3 = |{10,18}|
That means, the number of all values that smaller

than is sclnD:
𝑠𝑐𝑙𝑛𝐷 = (3 + 2 + 2) = 7

On the other hand we compute the number of all
values that only equal to 𝑀𝑒𝑑𝑇:

𝑐𝑒𝑛𝐷1 = |{27}|, 𝑐𝑒𝑛𝐷2 = |{27,27}|,
𝑐𝑒𝑛𝐷3 = |{27}|

That means, the number of all values that smaller
than is sclnD:

𝑠𝑐𝑒𝑛𝐷 = (1 + 2 + 1) − 1 = 3
Now we have the case:

(𝑠𝑐𝑙𝑛𝐷 + 𝑠𝑐𝑒𝑛𝐷) > 𝑠𝑐𝑔𝑛𝐷
We start now with step 5 of PCM- oMaRS algo-

rithm
MedLP = (((𝑠𝑐𝑙𝑛𝐷 + 𝑠𝑐𝑒𝑛𝐷) - scgnD)/2)

MedLP = ((7 + 3) – 4)/2 = 3
Now we know that the position of exact median

is to find in the left side of temporary median in 3
position.

Now before we get LtD, the sequence that con-
tains maximum 3 largest number from each dataset
smaller than or equal to 𝑀𝑒𝑑𝑇 differencing 𝑀𝑒𝑑𝑇
self. We compare the MedLP with scenD. If MedLP
≤ scenD then we do not need to do any computation
more because the temporary median has the same
value as the exact median. That means,

MedE = MedT = 27
Based on this example we can see the important

role of this optimization. This optimization provides
more best cases of our algorithm. The next section
illustrate these cases with the optimization.

4.3 Optimized PCM-oMaRS Cases Map
In figure (Figure 2), it was clarified that the best

case of our algorithm is executable by many cases.
The first two cases are applicable if the number of
values that greater than the temporary median equal
to the number of values that smaller than or equal to
the temporary median for both cases of total size of
all datasets.
The other cases is to find if the position number
smaller than or equal to the number of values that
equal to the temporary median for the case that the
number of values that greater than the temporary me-
dian smaller than the number of values that smaller
than or equal to temporary median in the both cases
of total size of all datasets. If the total size of all mul-
tisets is an even number and the difference equal to
1 then this case is too a best case of PCM- oMaRS
algorithm because in this case the temporary median

is one of the two middle values of exact median.

figure 2: abstract map of optimized PCM-oMaRS cases

In these cases, the PCM-oMaRS algorithm does
not need more to apply algorithm II completely, be-
cause the temporary median in this case is the re-
quired exact median. In other words that means, after
computing the position of the exact median we do
not need to apply any operation anymore to achieve
the required result.

5 COMPLEXITY AND STATISTICAL STUDY

OF PCM- OMARS ALGORITHM

In this section we discuss the cost of complexity of
our algorithm and give a basic statistical information
of our implementation experiments.

5.1 Complexity of PCM- oMaRS
The complexity of parallel algorithms depends on

three major classes of costs. The first class is the
communication cost because parallel algorithms ac-
cess data storage in distributed connected nodes. The
second class is the local execution cost. Generally
the more expensive operations execute in local level
the more efficient for the complexity of the parallel
algorithms. The third one is the cost of the parallel
algorithm in the global level.

In most cases the communication cost plays the
most expensive role in the total complexity cost.
Therefore by renouncing the use of iterations or re-

Best Case of

PCM- oMaRS

cursions of communications the PCM- oMaRS algo-
rithm and its optimized version achieved the maxi-
mal reduction of steps that play a crucial role with
the communications costs. Excessively with our al-
gorithm only basic operation and optimized sort al-
gorithm will be required to apply in both local and
global levels.
These classes of costs are cleared in the following
table:

Cost

Operation

Local
execution

Commu-
nication

Global ex-
ecution

Basic Oper-
ation

+ - +

General Op-
eration

+ - -

Sorting + - +!
Communi-
cation

- +! -

!: it is only one time and if it is required
table 1: abstract of total cost of PCM- oMaRS

In other words, the global and local execution
costs are in best case 𝑂(1) and the worst case
𝑂(𝑛. 𝑙𝑜𝑔𝑛) and the communication cost is in the
worst case the usualy applied network system com-
munications costs and it is counted only once. In re-
lation to this idea the blocking of data will be exe-
cuted only one time and only if it is necessary.

5.2 Statistical Study
Depending on tests of implementation of PCM-

oMaRS algorithm we have received some important
results. We have carried out over 55000 tests with
Eclipse-Parallel-Luna on intel(R) Core(TM)2 Duo
CPU P9600 processor with 8GB RAM. This results
are organized in a short statistical study as following.

We have classified the required data to getting the
exact median in 4 classes depending on our results.
We have found that in the worst case of applying
PCM- oMaRS algorithm we need to receive only
21.31% of all values in all datasets and in the best
case we do not need to receive any value (0% of all
values). In 35.63% of all tests we do not need to re-
ceive any data (0% of all values) to get the exact me-
dian and in 43.47% of all tests we need 0.01-4.99 %
all values. Belong to the sector 5-9.99% all values
14.76% of all tests and in 7.14% of all tests we need
10-21.31% all values.

This statistical information is represented in the
following:

Required Data % all tests
0% 35,63
(0,01 – 4,99) % 43,47
(5,00 – 9,99) % 14,76
(10,00 - 21,31) % 07,14

table 2: statistical information

 This table is represented in the following diagram

figure 3: statistical study of implmention of PCM- oMaRS

CONCLUSION

The research points of this field “median compu-
ting of distributed datasets” divided into two main
directions. The first one cares on the approximation
methods. The other one focuses on the computation
of the exact median with usage of iterative or recur-
sive steps. We have shown that we can compute the
exact median with clever steps depending on the cal-
culation of the position of the exact median without
needing to apply iterations or recursions to get the
value of the exact median. That means, DMC-
oMaRS algorithm guarantees the maximum reduc-
tion of median computation steps. Too, instead ap-
plying blocking of the required data by the beginning
an execution of an algorithm, the data may be
blocked only in one non iterative or recursive step
with the execution of our algorithm and if it is nec-
essary.

In this article we have shown that the most com-
putation of our algorithm is calculated in the local
nodes (computers), basic operations and operation
with efficient complexity will be executed in the
master computer (global one). That means in other
word, the costs of complexity of our algorithm is
computed through the common communication
costs and local execution costs like all other algo-
rithms in addition only the cost of an efficient sort
algorithm in step 5. In our experiments we have
proved that the execution of our algorithm can be
more effective in the local execution too, if we di-
vided the local dataset that contains enormous values
in many local datasets.

We have implemented this algorithm by Java
with two different input possibilities. The first one is
with manually targeted inputs to test extreme cases
of values distributions and the other one is random
inputs to be able to check all possible cases with the
passage of time. We have tested the implementation
of our algorithm with more than 40000 cases, some
of these depended on the manually targeted inputs
and the rest were in relation to the random inputs. In

0 10 20 30 40 50

0%

(0,01 – 4,99) %

(5,00 – 9,99) %

(10,00 - 21,31)%

Statistical Study of implmention of PCM- oMaRS

each case, the number of datasets is different, and
each dataset includes many different values.

ACKNOWLEDGMENT

We would like to thank our colleague in Database
and information systems department at university of
Rostock for their notes. Moreover, we would like to
express our gratitude IIE-SRF/USA organization for
its support scientists at risk and its scholarships.

REFERENCES

[1] Blum, M.; Floyd, R.; Pratt, V. et. al.: Time
Bounds for Selection. In Journal of Computer
and System Sciences 7. 1973. S. 448- 461.

[2] Blum, M.; Floyd, R; Pratt, V.; Rivest, R.; Tarjan,
R.: Time bounds for selection. In J. Comput.
System Sci 7. 1973; S. 448-461.

[3] Floyd, R.; Rivest, R.: Expected Time Bounds for
selection. In Communications of the ACM, val-
ume 18 number 3 1975. S. 165 -172.

[4] Schönhage, A.; Paterson, M.; Pippenger, N.:
Finding the median. In J. Comput. System Sci
13. 1976; S. 184-199.

[5] Rodeh, M.: Finding the median distibutively. In
J. Comput. System Sci. 24. 1982; S. 162-166.

[6] Marberg, J; Gafi, E.: An Optimal Shout-Echo

Algorithm for selection in distributed Sets. In

CSD-850015. 1985.

[7] Chin, F.; Ting, H.: An Improved Algorithm for

Finding the median distributively. In Algorith-

mica 2. 1987; S. 235-249.

[8] Santoro, N.; Sidney, J. ; Sidney, S.: A distributed

selection algorithm and its expected communi-

cation complexity. In Theoretical Computer Sci-

ence 100. 1992; S. 185-204.

[9] Har-Peled, S.; Mazumdar, S.: On coresets for k-

means and k-median clustering. In Proceedings

of the Annual ACM Symposium on Theory of

Computing. 2004.

[10] Zhang, Q.; Liu, J.; Wang, W. : Approximate

clustering on distributed data streams. In Pro-

ceedings of the IEEE International Conference

on Data Engineering. 2008. S. 1131 – 1139.

[11] Kuhn, F.; Locher, T. ; Wattenhofer, R.: Dis-

tributed Selection: A missing Piece of Data Ag-

gregation. In Communications of The ACM 51.

2008; S. 93-99.

[12] Feldman, D.; Langberg, M. : A unified

framework for approximating and clustering

data. In Proceedings of the Annual ACM Sym-

posium on Theory of Computing. 2011.

[13] Yingyu L.: Distributed k-median/k-means

Clustering on General Topologies. In NIPS

2013. 2013.W.-K. Chen, Linear Networks and

Systems. Belmont, Calif.: Wadsworth, pp. 123-

135, 1993. (Book style)

[14] Jia, L.; Lin, G.; Noubir, G.; Rajaraman, R.;

Sundaram, R.: Universal approximations for

TSP, Steiner Tree and set cover. In 37th Annoul

ACM Symposium on Theory of Computing

(STOC).2005; S. 386-395.
[15] Negro, A.; Samtoro, N.; Urrutia, J.: Efficient

distributed selection with bounded messages. In
IEEE Transactions of Parallel and Distributed
Systems.8 (4). 1997. S. 397-401.

[16] Peleg, D. : Distributed Computing: A Local-
ity-Sensitive Approach. In SIAM Monographs
on Dicrete Mathematics and Applications. 2000.

[17] Santoro, N.; Scheutzow, M.; Sidney, J. B. :
On the expected complexity of distributed selec-
tion. In Journal of Parallel and distributed Com-
puting 5 (2). 1988. S. 194-203.

[18] Yao, Y.; Gehrke, J.: The Cougar approach o
in-network query processing in sensor network.
In ACM SIGMOD Record, 31 (3). 2002. S. 9-
18.

[19] Garrigues, M.; Manzanera, A.: Exact and
Approximate Median Splitting on Distributed
Memory Machines. In UEI, ENSTA-ParisTech,
Paris, France.

[20] Balouch, A.; PCM- oMaRS Algorithm: Par-
allel computation of Median- Omniscient Maxi-
mal Reduction Steps. In American Research
Journal of Computer Science and Information
Technology Vol. 1 Issuse 1, June 2015. S. 1-11.

[21] Ivan, Tsmots; Dmytro, Peleshko; Ivan,
Izonin; Parallel Algorithms and VLSI Structures
for Median Filtering of Images in Real Time. In
International Journal of Advanced Research in
Computer Engineering & Technology (IJAR-
CET) Volume 3 Issue 8, August 2014. S. 2643-
2649.

