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Abstract: The PCM- oMaRS algorithm guarantees the maximal reduction steps of the computation of the 
exact median in distributed datasets and proved that we can compute the exact median effectively with 
reduction of blocking time and without needing the usage of recursive or iterative methods anymore. This 
algorithm provided more efficient execution not only in distributed datasets even in local datasets with 
enormous data. We cannot reduce the steps of PCM- oMaRS algorithm any more but we have found an idea 
to optimize one step of it. The most important step of this algorithm is the step in which the position of exact 
median will be determinate. For this step we have development a strategy to achieve more efficiency in 
determination of position of exact median. Our aim in this paper to maximize the best cases of our algorithm 
and this was achieved through dividing the calculation of number of all value that smaller than or equal to 
temporary median in tow groups. The first one contains only the values that smaller than the temporary 
median and the second group contains the values that equal to the temporary median. In this dividing we 
achieve other best cases of PCM- oMaRS algorithm and reducing the number of values that are required to 
compute the exact median. The complexity cost of this algorithm will be discussed more in this article. In 
addition some statistical information depending on our implementation tests of this algorithm will be given 
in this paper.  

Keywords: Median, Parallel Computation, Algorithm, optimization, Big Data, Evaluation, Analysis, 
complexity costs.  

——————————      —————————— 

1 INTRODUCTION

The goal of distributed aggregation is to compute 

an aggregation function on a set of distributed val-

ues. Typical aggregation functions are max, sum, 

count, average, median, variance, kth smallest, or 

largest value, or combinations thereof. The most 

problematic aggregation is in the distributed compu-

tation of holistic aggregation function, in especially 

of distributed enormous data sets. Such data is like 

streaming data from network-sensors. The database 

community classifies aggregation functions into 

three categories: distributive, algebraic and holistic. 

Combinations of these functions are believed to sup-

port a wide range of reasonable aggregation queries.  

PCM- oMaRS algorithm [20] shed a new light on 

the problem of distributed computation of exact me-

dian for general n distributed datasets. PCM- oMaRS 

solved the problem of exact median computation 

without using recursion or iteration steps and blocks 

determinate data only in one time by one step, actu-

ally by the last step if it is necessary. This algorithm 

consists of three major phases like as MapRaduce 

principle and depends on mathematical definition of 

median. 

The reduction of blocking time of streaming data 

and of complexing cost is a recent growing interest 

in distributed aggregation, thanks to emerging appli-

cation areas such as, e.g. data mining or sensor net-

works. Therefore we focus us on the optimization fa-

cilities of one step of PCM- oMaRS algorithm. With 

this optimization strategy we can simply see that this 

strategy makes this step more efficient. Then we 

show that the complexity of this algorithm is in worst 

case the worst case of a quick sort algorithm.  

This article is organized as follows: In section 2 

we list related works with a short summary. A short 

introduction of PCM-oMaRS algorithm is to find in 

section 3. Optimization strategy of PCM-oMaRs al-

gorithm is presented in section 4. The complexity of 

PCM- oMaRS algorithm will be shown in section 5, 



  

 

in addition we discus about some statistical infor-

mation concerning implantation of PCM- oMaRS 

and at the end we summarize the most important 

points of the article in last section. 

2 RELATED WORK 

Actually the research of distributed algorithm to 
determine the median is for more than 40 years ac-
tive. This problem hat attracted many researchers. In 
1973 is presented a new selection algorithm named 
PICK [1]. This algorithm proved a new lower bound 
for the cost of selection. The first linear algorithm is 
developed by Blum et al. [2] in 1973, in 1975 [3] has 
presented a new selection algorithm which is shown 
to be very efficient on the average, both theoretically 
and practically and Schönhage et al. [4] presented 
another algorithm which performs fewer compari-
sons on the worst case in 1976. In 1982 considered 
Rodeh [5] on the problem of computing the median 
of a bag of 2n numbers by using communicating pro-
cesses, each having some of the numbers in its local 
memory. This algorithm described the distributive 
median problem as series of transformations. Marber 
et al. [6] in 1985 considered the problem of selecting 
the kth largest element in a set of n elements distrib-
uted arbitrarily among the processors of a Shout-
Echo network. In 1987 developed Chin et al. [7] an 
improved algorithm for finding the median distribu-
tive. He embedded in the first part of its algorithm 
the Rodeh’s algorithm, in the second part of its algo-
rithm reduced the problem size by one quarter with 
three messages instead of reducing the problem size 
by half with two messages. With the third part of its 
algorithm resolved the problem of choosing the ini-
tiator. Santoro et al. [8] minimized with its algorithm 
the communication activities among the processors 
and considered the distributed k-selection problem. 
[9] shows the existence of small core-sets for the 
problems of computing k-median and k-means clus-
tering for points in low dimension and get an (1+ε)-
approximation. Kuhn et al. in 2008 [10] presented a 
k-selection algorithm and proved that distributed se-
lection indeed requires more work than other aggre-
gation function. In this article has shown that the 𝑘𝑡ℎ 
smallest element can be computed efficiently by 
providing both a randomized and a deterministic k-
selection algorithm. [11] Considered the k-median 
clustering on stream data arriving at distributed sites 
which communicate through a routing tree. They 
proposed a suite of algorithms for computing (1+ε)-
approximation k-median clustering over distributed 
data streams. The algorithms are able to reduce the 
data transmission to a small fraction of the original 
data. In [12], the author shows a unified framework 
for constructing core-sets and approximate cluster-
ing for such general sets of functions.  

In [13] has shown an algorithm that produces 
(1+ε)α- approximation, using any α-approximation 
non-distributed algorithm as a subroutine, with total 
communication cost. There are many others works 
in this field, [14] [15] [16] [17] [18]. All of these re-
searches have used the iteration, recursion or ap-
proximation in their steps. Garrigues et al. present in 
[19] a new grained distributed median randomized 
algorithm. This paper show that this algorithm is ef-
ficient on networks containing 𝑂(𝑁) (up to 𝑁 4⁄ −
1) processing units running in parallel. This algo-
rithm focuses to reduce the number of elements to 
process after each iteration. Tsmots et al. present in 
[21] a structure of the median filter device. Median 
filters are widely used for smoothing operations in 
signal, speech, and image processing. The conveyer 
device with parallel implementation of algorithms is 
widely used for quick median filtering. Median cal-
culation on the basis of completely parallel devices 
is redundant. Using streaming-conveyor devices re-
duce this redundancy. The calculation of the median 
in this devices is reduced to the execution pairwise 
sequence comparison and permutation of numbers.   

3 PCM- OMARS ALGORITHM 

In this section we will give a short introduction 
of PCM- oMaRS algorithm [20]. At first we repre-
sent the general mechanism of this algorithm 
through the following sub section. 

3.1 Illustration of PCM- oMaRs algorithm 
mechanism 
Figure 1 shows an abstract of the mechanism of 

our algorithm cleared by one sequence. In this figure 
we can see that the finding of position of exact me-
dian depending on the value of sclenD and of sgenD 
in which will be known to which direction must the 
position be moved from the position of the tempo-
rary median to achieve the position of exact median 

Figure 1: Abstract of PCM- oMaRS algorithm mechanism 

3.2 PCM- oMaRS Algorithm steps 
The steps of PCM- oMaRS algorithm are repre-

sented in the following: 
 



 

 

If the size of the sequence Ord is EVEN then the 

temporary median value is the first/second value of 

the two middle values of Ord instead to compute the 

average of both middle values. 𝑀𝑒𝑑𝐿𝑇 must stay one 

of the existing values not new calculated value.  

The following step is the position finding step. 

This step will be optimized in the following section 

of this paper. 

For more detailed information about PCM-

oMaRS algorithm see [20].  

3.3 Example of Application 
Let us have the following Datasets after ordering: 

𝐷1 = (3,5,11,27,30),   

𝐷2 = (1,7,27,27,29),   

𝐷3 = (10,18,27,30,32) 

In the first step we have to get 𝑴𝒆𝒅𝑻 a tempo-

rary median. 𝑴𝒆𝒅𝑻 is the median of 𝑂𝑟𝑑-set in 

which contains ordering all Minimal, Maximal and 

Median values of each Dataset.  

The minimal, maximal and median values for 

each dataset is as following:  

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷1 = {3,11,30}  
𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷2 = {1,27,29} 

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷3 = {10,27,32}  
Then the ordered set of them is 

𝑂𝑟𝑑 = (1,3,10,11,27,27,29,30,32) 

And the median of 𝑂𝑟𝑑 is the temporary median  

𝑴𝒆𝒅𝑻 and equal to 11. 

𝑀𝑒𝑑𝑇 = 27 
Now we start with step 4. We calculate cgnD1, 

cgnD2 and cgnD1 (number of all values that greater 

than 𝑀𝑒𝑑𝑇 of each dataset respectivelly) as follow-

ing:  

𝑐𝑔𝑛𝐷1 =  |{30}|, 𝑐𝑔𝑛𝐷2 = | {29}|,  
𝑐𝑔𝑛𝐷3 = |{30, 32}| 

Now the number of all values that greater than 

𝑀𝑒𝑑𝑇 in all datasets is scgnD: 

𝑠𝑐𝑔𝑛𝐷 =  1 + 1 + 2 = 4  
On the other hand we calculate now the number 

of all values that smaller than or equal to 𝑀𝑒𝑑𝑇:   
𝑐𝑙𝑒𝑛𝐷1 =  |{3,5,11,27}|,

𝑐𝑙𝑒𝑛𝐷2 =  |{1,7,27,27}|,  
𝑐𝑙𝑒𝑛𝐷3 = |{10,18,27}| 

That means, the number of all values that smaller 
than or equal to is sclenD: 

𝑠𝑐𝑙𝑒𝑛𝐷 =  (4 + 4 + 3) − 1 = 10 
(-1) is because we do not need to take the tempo-

rary median itself into consideration. That means, 
actually instead of counting clenD2 as 

𝑐𝑙𝑒𝑛𝐷2 =  |{1,7,27,27}| 
We count clenD2 as 

𝑐𝑙𝑒𝑛𝐷2 =  |{1,7,27}| 
Now we have the case:  

𝑠𝑐𝑙𝑒𝑛𝐷 >  𝑠𝑐𝑔𝑛𝐷 
We start now with step 5 of PCM- oMaRS algo-

rithm 
MedLP = ((sclenD - scgnD)/2) 

MedLP = (10 – 4)/2 = 3 
Now we know that the position of exact median 

is to find in the left side of temporary median in 3 
position. We get now LtD, the sequence that contains 
maximum 3 largest number from each dataset 
smaller than or equal to 𝑀𝑒𝑑𝑇 differencing 𝑀𝑒𝑑𝑇 
self. 
Max 3 greatest Nrs of D1≤ 27(𝑀𝑒𝑑𝑇) are 27,11,5 
Max 3 greatest Nrs of D2≤ 27(𝑀𝑒𝑑𝑇) are 27,7,1 
Max 3 greatest Nrs of D3≤ 27(𝑀𝑒𝑑𝑇) are 27,18,10 



  

 

Then LtD is as following 

𝐿𝑡𝐷 = (27,27,27,18,11,10,7,5,1) 
The exact median is now  

𝑀𝑒𝑑𝐸 =  𝐿𝑡𝐷[3] =  27 
The value 27 is really the exact median because 

the number of all values that greater than 27 is equal 
to the number of all values that smaller than or equal 
to 27 minus 1 (the median itself).  

In the following sections we focus on the optimi-
zation of PCM- oMaRS algorithm and its complex-
ity cost, in addition we discus some statistical infor-
mation of our implementation. 

4 OPTIMIZATION OF PCM- OMARS 

ALGORITHM 

The single step in which we can implement an op-
timization is the step 5 of PCM- oMaRS algorithm. 
In this step we can apply other computation strategy. 
This strategy makes a brilliant optimization of this 
algorithm.   This Optimizations step will illustrate in 
the following sub section. 

4.1 Position Finding Optimization 
In the step 5 of PCM- oMaRS algorithm we find 

the relationship of position determination in tow 
cases. The first one is if 𝑠𝑐𝑙𝑒𝑛𝐷 greater than  𝑠𝑐𝑔𝑛𝐷. 
The second case is if if 𝑠𝑐𝑙𝑒𝑛𝐷 smaller than 𝑠𝑐𝑔𝑛𝐷. 
For the second case we could not find any possiblity 
of optimization but for the first case we have found 
that we can optimize this case with clever steps. 
𝑠𝑐𝑔𝑛𝐷 is the number of all values that greater than 
the temporary median and 𝑠𝑐𝑙𝑒𝑛𝐷 is the number of 
all values that smaller than or equal to temporary me-
dian.  

Now we make the change. Instead to calculate the 
number of all values that smaller than or equal to 
temporary median, we calculate the number of all 
values that smaller than the temporary median and 
the number of all values that equal to the temporary 
median in 𝑠𝑐𝑙𝑛𝐷 and 𝑠𝑐𝑒𝑛𝐷 respectivelly. That 
means, the fourth step will be shown as following: 

In this case we can see simply that if the position 
MedLP smaller than or equal to 𝑠𝑐𝑒𝑛𝐷 then we do 
not need to make any other computations to get the 
exact median. In this optimization step we make this 
case belong to the best cases of PCM- oMaRS algo-
rithm.  That means, the fifth step is represented as 
following:   

In this optimization strategy is to remark too that 
if the MedLP greater than scenD then instead of 
sending all sequences of datasets to send back max-
imum MedLP values smaller than or equal to tempo-
rary median, the algorithm sends all datasets to send 
back maximum (𝐌𝐞𝐝𝐋𝐏 –  𝐬𝐜𝐞𝐧𝐃) values smaller 
than temporary median. This step of our optimiza-
tion reduce too the number of values that will be 
sorted to get the exact median.  The other cases of 
this step remain unchanged as following: 
 The last case of this step is simplest one and present 

in the following:  

In the following section we represent the new 
cases map after executing the presented optimization 
strategy.  

4.2 Example of Application with the 
Optimization 

Let us now apply our optimization of the previous 
example to clear the efficiency. Let us start with step 
4 the calculation of cgnD1, cgnD2 and cgnD1 stay 
unchanged as following:  

𝑐𝑔𝑛𝐷1 =  |{30}|,         𝑐𝑔𝑛𝐷2 = |{29}|, 
𝑐𝑔𝑛𝐷3 = |{30, 32}| 



 

 

Where the number of all values that greater than 
𝑀𝑒𝑑𝑇 in all datasets is scgnD: 

𝑠𝑐𝑔𝑛𝐷 =  1 + 1 + 2 = 4  
Now we calculate now the number of all values 

that only smaller than 𝑀𝑒𝑑𝑇:   
𝑐𝑙𝑛𝐷1 =  |{3,5,11}|, 𝑐𝑙𝑛𝐷2 =  |{1,7}|,  

𝑐𝑙𝑛𝐷3 = |{10,18}| 
That means, the number of all values that smaller 

than is sclnD: 
𝑠𝑐𝑙𝑛𝐷 =  (3 + 2 + 2) = 7 

On the other hand we compute the number of all 
values that only equal to 𝑀𝑒𝑑𝑇:   

𝑐𝑒𝑛𝐷1 =  |{27}|, 𝑐𝑒𝑛𝐷2 =  |{27,27}|,  
𝑐𝑒𝑛𝐷3 = |{27}| 

That means, the number of all values that smaller 
than is sclnD: 

𝑠𝑐𝑒𝑛𝐷 =  (1 + 2 + 1) − 1 = 3 
Now we have the case:  

(𝑠𝑐𝑙𝑛𝐷 + 𝑠𝑐𝑒𝑛𝐷)  >  𝑠𝑐𝑔𝑛𝐷 
We start now with step 5 of PCM- oMaRS algo-

rithm 
MedLP = (((𝑠𝑐𝑙𝑛𝐷 + 𝑠𝑐𝑒𝑛𝐷) - scgnD)/2) 

MedLP = ((7 + 3) – 4)/2 = 3 
Now we know that the position of exact median 

is to find in the left side of temporary median in 3 
position.  

Now before we get LtD, the sequence that con-
tains maximum 3 largest number from each dataset 
smaller than or equal to 𝑀𝑒𝑑𝑇 differencing 𝑀𝑒𝑑𝑇 
self. We compare the MedLP with scenD. If MedLP 
≤ scenD then we do not need to do any computation 
more because the temporary median has the same 
value as the exact median. That means,  

MedE = MedT = 27 
Based on this example we can see the important 

role of this optimization. This optimization provides 
more best cases of our algorithm. The next section 
illustrate these cases with the optimization.  

4.3 Optimized PCM-oMaRS Cases Map 
In figure (Figure 2), it was clarified that the best 

case of our algorithm is executable by many cases. 
The first two cases are applicable if the number of 
values that greater than the temporary median equal 
to the number of values that smaller than or equal to 
the temporary median for both cases of total size of 
all datasets.  
The other cases is to find if the position number 
smaller than or equal to the number of values that 
equal to the temporary median for the case that the 
number of values that greater than the temporary me-
dian smaller than the number of values that smaller 
than or equal to temporary median in the both cases 
of total size of all datasets. If the total size of all mul-
tisets is an even number and the difference equal to 
1 then this case is too a best case of PCM- oMaRS 
algorithm because in this case the temporary median 

is one of the two middle values of exact median. 

figure 2: abstract map of optimized PCM-oMaRS cases 

 

In these cases, the PCM-oMaRS algorithm does 
not need more to apply algorithm II completely, be-
cause the temporary median in this case is the re-
quired exact median. In other words that means, after 
computing the position of the exact median we do 
not need to apply any operation anymore to achieve 
the required result.  

5 COMPLEXITY AND STATISTICAL STUDY 

OF PCM- OMARS ALGORITHM 

In this section we discuss the cost of complexity of 
our algorithm and give a basic statistical information 
of our implementation experiments. 

5.1 Complexity of PCM- oMaRS 
The complexity of parallel algorithms depends on 

three major classes of costs. The first class is the 
communication cost because parallel algorithms ac-
cess data storage in distributed connected nodes. The 
second class is the local execution cost. Generally 
the more expensive operations execute in local level 
the more efficient for the complexity of the parallel 
algorithms. The third one is the cost of the parallel 
algorithm in the global level.  

In most cases the communication cost plays the 
most expensive role in the total complexity cost. 
Therefore by renouncing the use of iterations or re-

Best Case of 

PCM- oMaRS 



  

 

cursions of communications the PCM- oMaRS algo-
rithm and its optimized version achieved the maxi-
mal reduction of steps that play a crucial role with 
the communications costs. Excessively with our al-
gorithm only basic operation and optimized sort al-
gorithm will be required to apply in both local and 
global levels.  
These classes of costs are cleared in the following 
table: 

Cost 
 
Operation 

Local  
execution 

Commu-
nication 

Global ex-
ecution 

Basic Oper-
ation 

+ - + 

General Op-
eration 

+ - - 

Sorting + - +! 
Communi-
cation 

- +! - 

!: it is only one time and if it is required 
table 1: abstract of total cost of PCM- oMaRS 

 

In other words, the global and local execution 
costs are in best case 𝑂(1) and the worst case 
𝑂(𝑛. 𝑙𝑜𝑔𝑛) and the communication cost is in the 
worst case the usualy applied network system com-
munications costs and it is counted only once. In re-
lation to this idea the blocking of data will be exe-
cuted only one time and only if it is necessary.  

5.2 Statistical Study 
Depending on tests of implementation of PCM- 

oMaRS algorithm we have received some important 
results. We have carried out over 55000 tests with 
Eclipse-Parallel-Luna on intel(R) Core(TM)2 Duo 
CPU P9600 processor with 8GB RAM. This results 
are organized in a short statistical study as following. 

We have classified the required data to getting the 
exact median in 4 classes depending on our results. 
We have found that in the worst case of applying 
PCM- oMaRS algorithm we need to receive only 
21.31% of all values in all datasets and in the best 
case we do not need to receive any value (0% of all 
values). In 35.63% of all tests we do not need to re-
ceive any data (0% of all values) to get the exact me-
dian and in 43.47% of all tests we need 0.01-4.99 % 
all values. Belong to the sector 5-9.99% all values 
14.76% of all tests and in 7.14% of all tests we need 
10-21.31% all values.  

This statistical information is represented in the 
following: 

Required Data % all tests 
0% 35,63 
(0,01 – 4,99)    % 43,47 
(5,00 – 9,99)    % 14,76 
(10,00 - 21,31) % 07,14 

table 2: statistical information 

 This table is represented in the following diagram  

figure 3: statistical study of implmention of PCM- oMaRS 

CONCLUSION 

The research points of this field “median compu-
ting of distributed datasets” divided into two main 
directions. The first one cares on the approximation 
methods. The other one focuses on the computation 
of the exact median with usage of iterative or recur-
sive steps. We have shown that we can compute the 
exact median with clever steps depending on the cal-
culation of the position of the exact median without 
needing to apply iterations or recursions to get the 
value of the exact median. That means, DMC-
oMaRS algorithm guarantees the maximum reduc-
tion of median computation steps. Too, instead ap-
plying blocking of the required data by the beginning 
an execution of an algorithm, the data may be 
blocked only in one non iterative or recursive step 
with the execution of our algorithm and if it is nec-
essary.  

In this article we have shown that the most com-
putation of our algorithm is calculated in the local 
nodes (computers), basic operations and operation 
with efficient complexity will be executed in the 
master computer (global one).  That means in other 
word, the costs of complexity of our algorithm is 
computed through the common communication 
costs and local execution costs like all other algo-
rithms in addition only the cost of an efficient sort 
algorithm in step 5. In our experiments we have 
proved that the execution of our algorithm can be 
more effective in the local execution too, if we di-
vided the local dataset that contains enormous values 
in many local datasets.  

We have implemented this algorithm by Java 
with two different input possibilities. The first one is 
with manually targeted inputs to test extreme cases 
of values distributions and the other one is random 
inputs to be able to check all possible cases with the 
passage of time. We have tested the implementation 
of our algorithm with more than 40000 cases, some 
of these depended on the manually targeted inputs 
and the rest were in relation to the random inputs. In 
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each case, the number of datasets is different, and 
each dataset includes many different values.   
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