
 

The International Arab Conference on Information Technology (ACIT’2015) 
 

 
 

 

Modelling Software Fault debugging Complexity 

under Imperfect Debugging Environment 

Omar Shatnawi 

Al al-Bayt University 

 Jordan 

dromali@lycos.com 
 

Abstract: The fault debugging progress is influenced by various factors all of which may not be deterministic in nature such 

as the debugging effort, debugging efficiency and debuggers skill, and debugging methods and strategies. In order to address 

these realistic factors that influencing the debugging process we propose an integrated no homogeneous Poisson process 
(NHPP) based software reliability model. The integrated modelling approach incorporates the effect of imperfect fault 

debugging environment, fault debugging complexity and learning debuggers’ phenomenon. The debugging phase is assumed 

to be composed of three processes namely, fault detection, fault isolation and fault removal. The software faults are 

categorized into three types namely, simple, hard and complex according to their debugging complexity.As the debugging 

progresses, the fault removal rate changes to capture learning process of the debuggers. In order to relax the ideal debugging 

environment, two types of imperfect debugging phenomena are incorporated. Incorporating the imperfect fault debugging 

phenomena in software reliability modelling is very important to the reliability measurement as it is related to the efficiency of 

the debugging team. Accordingly, the total debugging process is the superposition of the three debugging activities processes. 

Such modeling approach can capture the variability in the software reliability growth curve due to debugging complexity of 

the faults depending on the debugging environment which enables the management to plan and control their debugging 

activities to tackle each type of fault. Actual test datasets cited from real software development projectshave been used to 
demonstrate the proposed model. 

 

Keywords: Software reliability engineering, software testing and debugging, non-homogenous Poisson process, 

imperfect debugging, fault debugging complexity. 

 

 
 

 

1. Introduction 

Computers are being widely used for a variety of 
applications in our daily life. With the rapid 

advancement in the technology, the cost of computer 

hardware has been steadily declining while on the 
contrary the cost of computer software is increasing. 

The production of computer software is seen to be the 

most prominent industry today. Therefore, it is of 
utmost importance to develop high quality software 

systems. Software reliability is one of the most 

important characteristics of software product quality. 

Its measurement and management technologies during 
the software product life-cycle are essential to produce 

and maintain reliable software systems [20].  

Observing the fault debugging phenomenon, software 
quality in terms of its reliability can be measured. 

Software reliability models based on the NHPP have 

been quite successful tools in practical software 

reliability engineering. These models consider the 
debugging process as a counting process characterized 

by its main value function. Software reliability can be 

estimated once the main value function is determined. 
Model parameters are usually estimated using either 

maximum likelihood estimate (MLE) or least-square 

estimate methods [5,7,13,20,21]. 

Several software reliability models have been 

developed in the literature to monitor and control the 

debugging process of the software systems 
[2,6,10,11,12,21]. During debugging phase it has been 

observed that the relationship between the debugging 

time and the corresponding number of faults removed 
is either exponential or S-shaped.  

This paper is organized as follows. Section 2 presents 

the model development and formulation for the 

proposed modelling approach. Section 3 provides the 
technique used for data analyses. Section 4 provides 

goodness of fit criteria used for validation and 

evaluation purpose. The goodness of fit of the 
proposed model is compared with the exponential 

model [2], delayed S-shaped model [21], Inflection S-

shaped mode [11], Erlang model [5], and software 

fault classification model [8] in section 5. We 
conclude this paper in Section 6. 

 

2. Software Reliability Modelling 

Most of NHPP based software reliability models were 

proposed under the assumption that similar effort and 
strategy is required for removing each of the faults. 

Such assumption helps to simplify the problem of 

modeling and provides to a certain extent plausible 

mailto:dromali@lycos.com


 

The International Arab Conference on Information Technology (ACIT’2015) 
 

 
 

 

results. However, this assumption is not truly 

representative of reality. Different faults may require a 
different amount of efforts and strategy for their 

removal from the system. To incorporate this 

phenomenon, faults are categorized into different types. 

Yamada et al. [22] proposed a modified exponential 
model assuming that there are two types of faults in the 

software. Later, Kapuret.al [5] proposed the Erlang 

model by categorizing the faults encountered into three 
types namely: simple, hard and complex. It is assumed 

that the time delay between the failure observation and 

its subsequent removal represent the complexity of 
faults. It has been assumed in these models that the 

fault removal rate remains constant over the entire 

debugging period. Due to the complexity of the 

software system, the debugging team may not be able 
to remove the faults at the same rate. As the debugging 

progresses, the fault removal rate changes. Learning 

usually manifests itself as a changing fault removal 
rate. To capture the learning-process, Kapuret al.[8] 

proposed a software fault classification model that 

integrated the effect of learning-process phenomenon of 
the debugging team in the Erlang model. Recently 

Shatnawi and Kapur[10] further extended the software 

fault classification to count for finite number of faults. 

However, in these models debugging process is 
assumed to be ideal. The assumption may not hold true 

in many situations.Due to the complexity of the 

software system and the incomplete understanding of 
the software requirements, specifications and structure, 

the debugging team may not be able to remove the fault 

perfectly and the original fault may remain. This 

phenomenon is known as imperfect fault 
debugging[6,7,14,15]. 

In order to relax the ideal debugging assumption, we 

integrate the effect of imperfect fault debugging on 
reliability growth of software based on the assumption 

of the classification model [8].Such type of integrated 

modeling approach is very much suited for object-
oriented and distributed systems development 

environments [7,16,17]. 

The following are the basic assumptions in developing 

and formulation the proposed modelling approach: 
1. Debugging process follows an NHPP with mean 

value function m (t). 

2. Software is subject to failures during execution 
caused by the remaining faults. 

3. The faults existing in the software are of three 

types: simple, hard and complex. They are 
distinguished by the amount of effort needed to 

remove them and modelled by 1-stage, 2-stage 

and 3-stage removal processes respectively. 

4. Each time a fault detected, an immediate (delayed) 
effort takes place to decide the cause of the failure 

in order to remove it. The time delay between the 

fault detection and its subsequent fault removal is 

assumed to represent the debugging complexity 

of the faults.  
5. The debugging process is imperfect.  

6. Fault removal rate of the simple fault is 

proportionality constant, whereas for hard and 

complex is a logistic function as it is expected 
the learning-process will grow with time. 

7. The expected number of faults removed in(𝑡, 𝑡 +
∆𝑡) is proportional to the number of faults 
remaining to be removed. 

 

 

The following notations are used for the mathematical 
development and formulation purpose: 

𝑎𝑖  Fault-content of type𝑖( 𝑎𝑖
3
𝑖=1 = 𝑎), where𝑎is 

the total fault-content. 

𝑏𝑖  Proportionality constant represents the fault 
detection/isolation rate per fault of type i. 

𝑏𝑖(𝑡) Logistic learning function represents the fault 

removal rate per fault of type i. 

𝑚𝑖𝑑 (𝑡) Mean number of fault detected of type iby t. 

𝑚𝑖𝑖 (𝑡) Mean number of fault isolated of type iby t. 

𝑚𝑖𝑟 (𝑡) Mean number of fault removed of type iby t. 

𝛽𝑖  Inflection factor of debug personnelin the fault 

removal rate per fault of type i. 

𝑝𝑖  Probability of perfect debugging, i.e., 

debugging efficiencyof type i. 

 

2.1 Modelling Approach Development 

In this section we revisited software classification 

model [8] that can be applied for reliability estimation 
for a software project expected to contain three 

different types of faults. The model categorise faults 

of different complexity depending on their debugging 
activities.Recall that the time delay between the fault 

detection and subsequent fault removal represents the 

complexity of the faults. Therefore, the model 
assuming that the software contains three types: 

simple, hard and complex.  

A simple fault debugging is modelled as a 1-stage 

process as follows: 
𝜕

𝜕𝑡
𝑚1𝑟(𝑡) = 𝑏1(𝑎1 −𝑚1𝑟(𝑡))          (1) 

The one-stage process as modelled above describes the 

fault detection, fault isolation and fault removal 
processes. Solving the differential equation (1) under 

the boundary condition 𝑚1𝑟 𝑡 = 0 = 0, we get 

𝑚1𝑟(𝑡) = 𝑎1(1 − 𝑒−𝑏1𝑡)                      (2) 

The harder types of faults are assumed to take more 

effort. In other words it also means that the debugging 
team personnel have to spend more time to analyze the 

detected faults and consequently need more effort to 

remove them. Debugging process for such faults is 
modelled as 2-stage process as follows: 

𝜕

𝜕𝑡
𝑚2𝑑(𝑡) = 𝑏2(𝑎2 −𝑚2𝑑(𝑡)) 
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𝜕

𝜕𝑡
𝑚2𝑟(𝑡) = 𝑏2(𝑡)(𝑚2𝑑(𝑡) −𝑚2𝑟(𝑡)) 

Where 𝑏2(𝑡) =
𝑏2

1+𝛽2𝑒
−𝑏2𝑡

(3) 

The first stage of the two-stage process as modelled 

above describes the fault detection and the fault isolation 

process. The second stage describes the fault removal 

process. Solving, the system of differential equations 

given in (3) under the boundary conditions𝑚2𝑑 𝑡 =
0=0 and 𝑚2𝑟𝑡=0=0respectively, we get 

𝑚2𝑟(𝑡) =
𝑎2 1− 1+𝑏2𝑡 𝑒

−𝑏2𝑡 

1+𝛽2𝑒
−𝑏2𝑡

   (4) 

The complex fault debugging process is modelled as a 3-

stage process, 
𝜕

𝜕𝑡
𝑚2𝑑(𝑡) = 𝑏3(𝑎3 −𝑚2𝑑(𝑡)) 

𝜕

𝜕𝑡
𝑚3𝑖(𝑡) = 𝑏3(𝑚2𝑑(𝑡) − 𝑚3𝑖(𝑡)) 

𝜕

𝜕𝑡
𝑚3𝑟(𝑡) = 𝑏3(𝑡)(𝑚3𝑖(𝑡) − 𝑚3𝑟(𝑡)) 

Where 𝑏3(𝑡) =
𝑏3

1+𝛽3𝑒
−𝑏3𝑡

(5) 

The first stage of the three-stage process as modelled 

above describes the fault detection. The second stage 

describes the fault isolation process. The third stage 
describes the fault removal process. Solving the above 

system of differential equations given in (5) under the 

boundary conditions 𝑚3𝑑 𝑡 = 0 = 0, 𝑚3𝑖 𝑡 = 0 = 0 

and 𝑚3𝑟 𝑡 = 0 = 0respectively, we get 

𝑚3𝑟(𝑡) =
𝑎3 1− 1+𝑏3𝑡+𝑏3

2𝑡
2

2
 𝑒−𝑏3𝑡 

1+𝛽3𝑒
−𝑏3𝑡

          (6) 

The software fault classification model is the 

superposition of the three NHPP with mean value 
functions givens in equations (2), (4) and (6) as 

𝑚 𝑡 =  𝑚𝑖𝑟  𝑡 
3

𝑖=1

= 𝑎1 1 − 𝑒−𝑏1𝑡 

+
𝑎2 1 −  1 + 𝑏2𝑡 𝑒

−𝑏2𝑡 

1 + 𝛽2𝑒−𝑏2𝑡

+
𝑎3  1 −  1 + 𝑏3𝑡 + 𝑏3

2 𝑡
2

2
 𝑒−𝑏3𝑡 

1 + 𝛽3𝑒
−𝑏3𝑡

 

(7) 

To model the debugging phenomenon of each type of 
fault directly in single stage considering the delay of 

the removal process. The fault removal rate per fault 

‗𝑑𝑖(𝑡)‘ for 𝑖 𝑖 = 1,2,3  fault-type, can be obtained as 

𝑑1(𝑡) =

𝜕

𝜕𝑡
𝑚1𝑡

𝑎1 −𝑚1𝑡
= 𝑏1 

𝑑2(𝑡) =

𝜕

𝜕𝑡
𝑚2𝑡

𝑎2 −𝑚2 𝑛 

=
𝑏2   1 + 𝛽2 + 𝑏2𝑡 −  1 + 𝛽2𝑒

−𝑏2𝑡  

 1 + 𝛽2 + 𝑏2𝑡  1 + 𝛽2𝑒−𝑏2𝑡 
 

𝑑3(𝑡) =

𝜕

𝜕𝑡
𝑚3𝑡

𝑎3 −𝑚3 𝑛 

=

𝑏3   1 + 𝛽3 + 𝑏3𝑡 + 𝑏3
2 𝑡

2

2
 −  1 + 𝑏3𝑡  1 + 𝛽3𝑒

−𝑏3𝑡  

 1 + 𝛽3 + 𝑏3𝑡 + 𝑏3
2 𝑡

2

2
  1 + 𝛽3𝑒

−𝑏3𝑡 
 

(8) 

Note that 𝑑2(𝑡) and 𝑑3(𝑡) increase monotonically with 

time t and tend to constants 𝑏2 and 𝑏3 respectively as 

𝑡 → ∞. Thus, in the steady state, hard and complex 

faults growth curves behave similar to the simple fault 

growth curve and hence there is no loss of generality in 

assuming the steady state rates 𝑏2 and 𝑏3 to be equal 

to𝑏1. After substituting 𝑏3 = 𝑏2 = 𝑏1in the right hand 

side of equation (8), one can see that 𝑑1(𝑡) > 𝑑2(𝑡) >
𝑑3(𝑡), which is in accordance with the complexity of 
the faults [4,5,7,16].  

Hence there is no loss of generality in assuming the 

steady state 𝑏3 = 𝑏2 = 𝑏1 = 𝑏 and 𝛽3 = 𝛽3 = 𝛽1 = 𝛽 

(say). Then we may write equation (7) as follows 

𝑚 𝑡 = 𝑎1 1 − 𝑒−𝑏𝑡  +
𝑎2 1− 1+𝑏𝑡  𝑒−𝑏𝑡  

1+𝛽𝑒−𝑏𝑡
+

𝑎3 1− 1+𝑏𝑡+𝑏2𝑡
2

2
 𝑒−𝑏𝑡  

1+𝛽𝑒−𝑏𝑡
                                                 (9) 

 

2.2 Modelling Approach Formulation 

In order to relax the perfect debugging assumption of 

the software classification model [8] and given in (9), 

we introduce the possibility of imperfect fault 
debugging phenomenon. Incorporating the imperfect 

fault debugging phenomenon in software reliability 

modelling can be of immense help to the reliability 
assessment as it is related to the efficiency of the 

debugging team. However, the debugging team may 

not be able to remove the fault perfectly and the 

original fault may remain leading to a phenomenon 
known as imperfect fault debugging. Accordingly the 

debugging phenomenon can be described for the three 

types of faults 𝑖 𝑖 = 1,2,3 with respect to time in a 
single stage as follows: 
𝜕

𝜕𝑡
𝑚𝑖(𝑡) = 𝑝𝑖𝑑𝑖(𝑡) 𝑎𝑖 −𝑚𝑖(𝑡) (10) 

Solving the above system of difference equations (10), 

with respect to equation (8) using the probability 
generating function with the boundary conditions 

𝑚1 𝑡 = 0 = 𝑚2 𝑡 = 0 = 𝑚3 𝑡 = 0 = 0, 

respectively, one can get  

𝑚1 𝑡 = 𝑎1 1− 𝑒−𝑝1𝑏1𝑡  

𝑚2 𝑡 = 𝑎2  1 −  
 1 + 𝛽2 + 𝑏2𝑡 𝑒

−𝑏2𝑡

1 + 𝛽2𝑒−𝑏2𝑡
 

𝑝2

  

𝑚3 𝑡 

= 𝑎3  1 −  
 1 + 𝛽3 + 𝑏3𝑡 + 𝑏3

2 𝑡
2

2
 𝑒−𝑏3𝑡

1 + 𝛽3𝑒−𝑏3𝑡
 

𝑝3
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(11) 

The proposed model is the superposition of all the 
NHPP with mean value functions given in (11) and is 

given as 

𝑚 𝑡 =  𝑚𝑖 𝑛 

3

𝑖=1

= 𝑎1 1 − 𝑒−𝑝1𝑏1𝑡 

+ 𝑎2  1 −  
 1 + 𝛽2 + 𝑏2𝑡 𝑒

−𝑏2𝑡

1 + 𝛽2𝑒
−𝑏2𝑡

 

𝑝2

 

+ 𝑎3  1

−  
 1 + 𝛽3 + 𝑏3𝑡 + 𝑏3

2 𝑡
2

2
 𝑒−𝑏3𝑡

1 + 𝛽3𝑒
−𝑏3𝑡

 

𝑝3

  

(12) 

The analysis of the fault removal per remaining 

followed earlier with respect to equation (8) can be 
applied here. Therefore, there is no loss of generality in 

assuming the steady state𝑏3 = 𝑏2 = 𝑏1 = 𝑏,𝑝3 = 𝑝2 =
𝑝1 = 𝑝, and 𝛽3 = 𝛽2 = 𝛽 (say). Then we may write 
equation (12) as follows 

𝑚 𝑡 = 𝑎1 1 − 𝑒−𝑝𝑏𝑡  

+ 𝑎2  1 −  
 1 + 𝛽 + 𝑏𝑡 𝑒−𝑏𝑡

1 + 𝛽𝑒−𝑏𝑡
 

𝑝

 

+ 𝑎3  1

−  
 1 + 𝛽 + 𝑏𝑡 + 𝑏2 𝑡

2

2
 𝑒−𝑏𝑡

1 + 𝛽𝑒−𝑏𝑡
 

𝑝

  

(13) 

The above proposed model integrates the effect of three 
types of fault debugging complexity and incorporates 

the learning phenomenon of the debugger under 

imperfect fault debugging environment.It should be 

pointed out here that the proposed model given in 
equation (13) is more general than that of the 

classification model [8] and given in equation (9) since 

it includes the effect of two types of imperfect fault 
debugging, and has the models due to [7, 14, 21] as 

special cases. Such modeling approach provides an 

integrated common platform for not only software 
reliability growth models with perfect fault debugging 

but also for imperfect fault debugging. 

3. Parameter Estimation Technique 

Parameters estimation is of primary concern in software 

reliability measurement. The maximum likelihood 

estimation (MLE) method is employed to estimate the 
unknown parameters of the models under comparison. 

Since all data sets used are given in the form of 

pairs 𝑛𝑖 − 𝑥𝑖  𝑖 = 1,2, … , 𝑓 , where 𝑥𝑖 the cumulative 

number of faults is detected by 𝑛𝑖  test cases 0 < 𝑛1 <
𝑛 < ⋯ < 𝑛 and 𝑛𝑖  is the accumulated number of test 

run executed to detect 𝑥𝑖  faults. The likelihood 

function L for the unknown parameters with the 

superposed mean value function 𝑚 𝑡 is given as 

𝐿 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  𝑛, 𝑥𝑖  

=  
 𝑚 𝑡𝑖 − 𝑚 𝑡𝑖 − 1  

𝑥𝑖−𝑥𝑖−1

 𝑥𝑖 − 𝑥𝑖−1 !

𝑘

𝑖=1
𝑒− 𝑚 𝑡𝑖 −𝑚 𝑡𝑖−1   

(16)  

Taking natural logarithm of (16) we get 

ln 𝐿 =   𝑥𝑖 − 𝑥𝑖−1 
𝑘

𝑖=1
ln 𝑚 𝑡𝑖 − 𝑚 𝑡𝑖 − 1  

−  𝑚 𝑡𝑖 −𝑚 𝑡𝑖 − 1   ln 𝑥𝑖
𝑘

𝑖=1

− 𝑥𝑖−1  
(17) 
The MLE of the unknown parameters can be obtained 

by maximizing the likelihood function subject to the 

parameters constraints. 
For faster and accurate calculations, the statistical 

package for social sciences (SPSS) based on the 

nonlinear regression technique has been utilized for 
the estimation of the parameters of the proposed 

models and the models under comparison. Non-linear 

regression is a technique of finding a nonlinear model 

of the relationship between the dependent variable and 
a set of independent variables. Unlike traditional 

linear regression, which is restricted to estimating 

linear models, non-linear regression can estimate 
models with arbitrary relationships between 

independent and dependent variables. 

 

4. Data Analysis Technique 

Before applying any software reliability model to a set 

of fault detection data it is advisable to determine 
whether the test data does, in fact, exhibit reliability 

growth. If a set of test data does not exhibit increasing 

reliability as debugging progresses, there is no point in 
attempting to estimate and forecast the system‘s 

reliability. Since the proposed model is a fault count 

model, the test may only be applied to data in which 
the test intervals are of equal length. Therefore, we 

divided the computer test runs (0, 𝑓] into𝑘 units of 

time of equal length. The trend test that is commonly 

carried out is [3, 15]: 

 Laplace Test. This test is superior from an 

optimality point of view and is recommended 

for use when the NHPP assumption is made. In 

terms of 𝑛𝑖( 𝑖 = 1,2,3, … , 𝑓) the number of fault 

detected  during unit of time 𝑖, the expression of 

the Laplace factor is  

𝑢𝑓 =
  𝑖−1 
𝑓
𝑖=1 𝑛𝑖−

𝑓−1

2
 𝑛𝑖
𝑓
𝑖=1

 𝑓
2−1

12
 𝑛𝑖
𝑓
𝑖=1

 (18) 
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In the context of reliability growth, negative values 

indicate decreasing failure intensity and thus a 
reliability increase, positive values suggest increasing 

failure intensity and thus a reliability decrease, and 

values oscillating between -2 and +2 indicate stable 

reliability. Laplace test provides information about 
reliabilitytrend evolution. However, in order to evaluate 

the reliability quantitatively, software reliability models 

should be employed. 

 

5. Model Validation & Comparison Criteria 

To check the validity of the proposed software 

reliability model, and to make a fair comparison with 
other well-established existing models, we apply three 

test datasets collected from real software development 

projects to evaluate the goodness of fit of the models 
under comparison. The criteria adopted for the purpose 

are: 

 Coefficient of Multiple Determinations (Squared). 

This measure can be used to investigate whether 

a significant trend exists in the observed failure 
intensity. This coefficient is defined as the ratio 

of the Sum of Squares (SS) resulting from the 

trend model to that from a constant model 
subtracted from 1, that is,  

  𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = 1 −
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  𝑆𝑆

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  𝑆𝑆
(19) 

Rsquared measures the percentage of the total 

variation about the mean accounted for by the 
fitted curve. It ranges in value from 0 to 1. Small 

values indicate that the model does not fit the 

data well. 

 The mean square fitting error (MSE). The models 

under comparison are used to simulate the test 
data, the difference between the expected values, 

𝑚 𝑛𝑖  and the observed data 𝑥𝑖  is measured by 

MSE as follows:  

𝑀𝑆𝐸 =
1

𝑓
  𝑚 𝑖(𝑡) − 𝑥𝑖 

2𝑓
𝑖=1  (20) 

where𝑓 is the number of observations. 

 Bias. The difference between the observation and 

prediction of number of faults at any instant of 

time 𝑖 is known as 𝑃𝐸𝑖  (prediction error). The 

average of 𝑃𝐸𝑠 is known as bias. 

𝐵𝑖𝑎𝑠 =
1

𝑓
 𝑃𝐸𝑖
𝑓
𝑖=1            (21) 

𝑃𝐸𝑖 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)𝑖  

 Variation. The standard deviation of prediction 

error is known as variation. 

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  
1

𝑓−1
  𝑃𝐸𝑖 −𝐵𝑖𝑎𝑠 2𝑓
𝑖=1 (22) 

 Root Mean Square Prediction Error (RMSPE). It 

is a measure of closeness with which a model 

predicts the observation. 

𝑅𝑀𝑆𝑃𝐸 =   𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛2 (23) 

In other words, we evaluate the performance of the 

models under comparison using Rsquared, MSE, Bias, 
Variation, and RMSPE metrics. For Rsquared, the larger 

the metric value the better while for MSE, Bias, 

Variation, and RMSPE, the smaller the metric value 

the better the model fits relative to other models run on 
the same test dataset. 

 

6. Data Analyses and Model Comparison 

This section presents the result of goodness-of-fit 

comparisons. The performance of the proposed model 
is compared to those of: the exponential model [2], 

delayed S-shaped model [21], Inflection S-shaped 

mode [11], Erlang model [5], and software fault 
classification model [8].We employ five goodness of 

fit criteria: Rsquared, MSE, bias, variation, and 

RMSPEas criteria of the model comparison in this 

section. 
 

5.1 First Software Development Project 

The first software test data had been collected during 

20 weeks, spending 10,000 CPU hours of testing one 

of four major releases of the software products at 

Tandem Computers Company, Los Anglos (CA), 100 
faults were detected during the period [18].  

Figure 1.1 traces the Laplace trend test. The values of 

the trend test are completely negative from beginning. 
However, in period from 3

rd
 week till 9

th
 week we see 

some fluctuations but this fluctuation doesn‘t affect 

the reliability much and reliability has growing 
behaviour and after 9

th
 week, the behaviour becomes 

stable which means that reliability grew 

monotonically.  

 

 
 

Figure 1.1 Laplace test data trend 

 

The unknown parameters of the models under 
comparison have been estimated using the regression 

module of SPSS. The values of estimated parameters 

have been tabulated below in Table 1.1. The 

estimation results of the proposed model depict an 
ideal debugging environment, i.e., that the debugging 

efficiency parameter ‗𝑝‘ is 100%. Although it seems 
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unrealistic but the probability of perfect debugging fault 

parameter comes out to be one denying the presence of 
imperfect fault debugging, which again makes the 

results of proposed model equivalent to the of model 

due to [8]. Hence any of these models can be chosen for 

further analysis and represent the debugging process, 
the choice can be subjective of the decision maker. The 

value 33.05 for the shape parameter ‗𝛽𝑖‘ implies the s-

shaped of the actual test data due to the fact that only a 
few faults are removed at the beginning and faults 

rapidly become removed. It is estimated that a total of 

105 faults are observed in the 20 weeks and all of them 
were removed successfully in the same debugging 

period.  
Table 1.1. Parameter estimation results 

Models under 

Comparison 

Parameter Estimation 

a a1 a2 a3 b p β 

Model due to [2] 134 — — — 1.46E-04 — — 

Model due to [21] 102 — — — 5.07E-04 — 0 

Model due to [11] 134 — — — 1.46E-04  0 

Model due to [5] 122 62 0 60 3.64E-04 — — 

Model due to [8] 105 48 57 0 6.38E-04 — 33.05 

Proposed 105 48 57 0 6.38E-04 1 33.05 

─ indicates the parameter is not part of the corresponding model  

 
Table 1.2. Comparison criteria results 

Models under 

Comparison 

Comparison Criteria 

R squared MSE Bias Variation RMSPE 

Model due to [2] 0.9905 7.61 0.448 2.792 2.828 

Model due to [21] 0.9493 41.20 1.826 6.314 6.573 

Model due to [11] 0.9905 7.61 0.448 2.792 2.828 

Model due to [5] 0.9930 5.66 0.367 2.411 2.439 

Model due to [8] 0.9974 2.09 0.073 1.481 1.483 

Proposed 0.9974 2.09 0.073 1.481 1.483 

 
Table 1.2 above provides the values of the goodness of 

fit metrics obtained by the models under comparison. It 

clearly shows that the proposed model is superior. The 

fitting of the proposed model is illustrated graphically 
in Figure 1.2. The fitting is excellent. 

 

 
 

Figure 1. 2 Software reliability growth curves 
 

5.2 Second Software Development Project 

The second software test data had been collected during 

21 weeks, spending 25.3 CPU hours of testing a real 

time command and control application (systems T1) of 

size 21.7K object instructions, 136 faults were 

detected during the period [10].  
Figure 2.1 traces the Laplace trend test. The values of 

the trend test are oscillating between -2 and +2 

indicate stable reliability. However, from 8
th

 week the 

values are completely positive with some fluctuations 
but this fluctuation doesn‘t affect the reliability much 

and reliability has decay behaviour. As the duration of 

the decrease seems long, attention must be paid to it. 
Those situations in which reliability continues to 

decrease can point to problems in the software [3]. 

 

 
 

Figure 2.1 Laplace test data trend 

 
The unknown parameters of the models under 

comparison have been estimated using the regression 

module of SPSS. The values of estimated parameters 
have been tabulated below in Table 2.1. The 

estimation results of the proposed model depict an 

imperfect fault debugging environment, i.e., that the 

debugging efficiency parameter ‗𝑝‘ is 35.7%. 
Therefore, imperfect fault debugging does not change 

the content of faults in the software. The value 490.51 

for the shape parameter ‗𝛽𝑖‘ implies the S-shaped of 
the actual test data. It is estimated that a total of 147 

faults are observed in the 21 weeks and all of them 

were removed successfully in the same debugging 
period.  

 
Table 1.1. Parameter estimation results 
 

Models under 

Comparison 

Parameter Estimation 

a a1 a2 a3 b p β 

Model due to [2] 150 — — — 0.086 — — 

Model due to [21] 128 — — — 0.288 — — 

Model due to [11] 150 — — — 0.086 — 0 

Model due to [5] 153 101 52 0 0.140 — — 

Model due to [8] 151 91 60 0 0.176 — 17.20 

Proposed 147 104 43 0 0.426 0.357 490.5 

─ indicates the parameter is not part of the corresponding model  

 
Table 1.2. Comparison criteria results 
 

Models under 

Comparison 

Comparison Criteria 

R squared MSE Bias Variation RMSPE 

Model due to [2] 0.99239 18.03 1.174 4.182 4.343 

Model due to [21] 0.96595 80.77 3.502 8.481 9.176 

Model due to [11] 0.99239 18.03 1.174 4.182 4.343 

Model due to [5] 0.99372 14.90 0.923 3.840 3.950 
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Model due to [8] 0.99495 11.97 0.511 3.507 3.544 

Proposed 0.99545 10.79 0.527 3.322 3.363 

 
Table 2.2 above provides the values of the goodness of 

fit metrics obtained by the models under comparison. It 

clearly shows that the proposed model is superior to the 

other models under comparison. Except for Bias metric 
the fault classification model [8] got lower value. The 

Fitting of the proposed model is illustrated graphically 

in Figure 2.2. The fitting is excellent. 
Based on our data analyses and model comparisons. We 

may conclude that incorporating imperfect fault 

debugging phenomenon yields better results. 
 

 
 

Figure 2. 2 Software reliability growth curves. 

 

7. Conclusion 

Categorization the faults in the software system into 

three types according to their debugging complexity 

where each type is modelled by a different reliability 
growth curve helps in capturing variability in the growth 

curves depending on the debugging environment and at 

the same time it has the capability to reduce either to 

exponential or S-shaped growth curves.It is observed 
that the incorporation of imperfect debugging increases 

the credibility of the model. To increase the model 

credibility, two types of imperfect debugging have been 
incorporated. The results were fairly encouraging when 

compared with other model developed under similar 

environment. The results can be viewed through the 

numerical illustrations shown in Tables and Figures 
obtained after the estimation performed on three actual 

test datasets cited from real software development 

projects.Such type of integrated modeling approach is 
very much suited for object-oriented and distributed 

systems development environments. Another point 

worth mentioning about the modelling approach is its 
inbuilt flexibility. It can describe an imperfect 

debugging phenomenon as exponential or S-shaped 

growth curve. At the same time, it can describe the 

situation where the imperfect debugging phenomenon 
does not exist as seen in the first software project 

development. 

Since no single functional form can describe the 

growth in number of faults during testing phase and 
debugging process. This necessitates a modelling 

approach that can be modified without unnecessarily 

increasing the complexity of the resultant model. We 

feel that the proposed modeling approach is a step in 
that direction. The extension of the modeling approach 

incorporating more types of faults is an ongoing 

challenge that stimulates us to continue working on 
this direction. 
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