

The International Arab Conference on Information Technology (ACIT’2015)

Modelling Software Fault debugging Complexity

under Imperfect Debugging Environment

Omar Shatnawi

Al al-Bayt University

 Jordan

dromali@lycos.com

Abstract: The fault debugging progress is influenced by various factors all of which may not be deterministic in nature such

as the debugging effort, debugging efficiency and debuggers skill, and debugging methods and strategies. In order to address

these realistic factors that influencing the debugging process we propose an integrated no homogeneous Poisson process
(NHPP) based software reliability model. The integrated modelling approach incorporates the effect of imperfect fault

debugging environment, fault debugging complexity and learning debuggers’ phenomenon. The debugging phase is assumed

to be composed of three processes namely, fault detection, fault isolation and fault removal. The software faults are

categorized into three types namely, simple, hard and complex according to their debugging complexity.As the debugging

progresses, the fault removal rate changes to capture learning process of the debuggers. In order to relax the ideal debugging

environment, two types of imperfect debugging phenomena are incorporated. Incorporating the imperfect fault debugging

phenomena in software reliability modelling is very important to the reliability measurement as it is related to the efficiency of

the debugging team. Accordingly, the total debugging process is the superposition of the three debugging activities processes.

Such modeling approach can capture the variability in the software reliability growth curve due to debugging complexity of

the faults depending on the debugging environment which enables the management to plan and control their debugging

activities to tackle each type of fault. Actual test datasets cited from real software development projectshave been used to
demonstrate the proposed model.

Keywords: Software reliability engineering, software testing and debugging, non-homogenous Poisson process,

imperfect debugging, fault debugging complexity.

1. Introduction

Computers are being widely used for a variety of
applications in our daily life. With the rapid

advancement in the technology, the cost of computer

hardware has been steadily declining while on the
contrary the cost of computer software is increasing.

The production of computer software is seen to be the

most prominent industry today. Therefore, it is of
utmost importance to develop high quality software

systems. Software reliability is one of the most

important characteristics of software product quality.

Its measurement and management technologies during
the software product life-cycle are essential to produce

and maintain reliable software systems [20].

Observing the fault debugging phenomenon, software
quality in terms of its reliability can be measured.

Software reliability models based on the NHPP have

been quite successful tools in practical software

reliability engineering. These models consider the
debugging process as a counting process characterized

by its main value function. Software reliability can be

estimated once the main value function is determined.
Model parameters are usually estimated using either

maximum likelihood estimate (MLE) or least-square

estimate methods [5,7,13,20,21].

Several software reliability models have been

developed in the literature to monitor and control the

debugging process of the software systems
[2,6,10,11,12,21]. During debugging phase it has been

observed that the relationship between the debugging

time and the corresponding number of faults removed
is either exponential or S-shaped.

This paper is organized as follows. Section 2 presents

the model development and formulation for the

proposed modelling approach. Section 3 provides the
technique used for data analyses. Section 4 provides

goodness of fit criteria used for validation and

evaluation purpose. The goodness of fit of the
proposed model is compared with the exponential

model [2], delayed S-shaped model [21], Inflection S-

shaped mode [11], Erlang model [5], and software

fault classification model [8] in section 5. We
conclude this paper in Section 6.

2. Software Reliability Modelling

Most of NHPP based software reliability models were

proposed under the assumption that similar effort and
strategy is required for removing each of the faults.

Such assumption helps to simplify the problem of

modeling and provides to a certain extent plausible

mailto:dromali@lycos.com

The International Arab Conference on Information Technology (ACIT’2015)

results. However, this assumption is not truly

representative of reality. Different faults may require a
different amount of efforts and strategy for their

removal from the system. To incorporate this

phenomenon, faults are categorized into different types.

Yamada et al. [22] proposed a modified exponential
model assuming that there are two types of faults in the

software. Later, Kapuret.al [5] proposed the Erlang

model by categorizing the faults encountered into three
types namely: simple, hard and complex. It is assumed

that the time delay between the failure observation and

its subsequent removal represent the complexity of
faults. It has been assumed in these models that the

fault removal rate remains constant over the entire

debugging period. Due to the complexity of the

software system, the debugging team may not be able
to remove the faults at the same rate. As the debugging

progresses, the fault removal rate changes. Learning

usually manifests itself as a changing fault removal
rate. To capture the learning-process, Kapuret al.[8]

proposed a software fault classification model that

integrated the effect of learning-process phenomenon of
the debugging team in the Erlang model. Recently

Shatnawi and Kapur[10] further extended the software

fault classification to count for finite number of faults.

However, in these models debugging process is
assumed to be ideal. The assumption may not hold true

in many situations.Due to the complexity of the

software system and the incomplete understanding of
the software requirements, specifications and structure,

the debugging team may not be able to remove the fault

perfectly and the original fault may remain. This

phenomenon is known as imperfect fault
debugging[6,7,14,15].

In order to relax the ideal debugging assumption, we

integrate the effect of imperfect fault debugging on
reliability growth of software based on the assumption

of the classification model [8].Such type of integrated

modeling approach is very much suited for object-
oriented and distributed systems development

environments [7,16,17].

The following are the basic assumptions in developing

and formulation the proposed modelling approach:
1. Debugging process follows an NHPP with mean

value function m (t).

2. Software is subject to failures during execution
caused by the remaining faults.

3. The faults existing in the software are of three

types: simple, hard and complex. They are
distinguished by the amount of effort needed to

remove them and modelled by 1-stage, 2-stage

and 3-stage removal processes respectively.

4. Each time a fault detected, an immediate (delayed)
effort takes place to decide the cause of the failure

in order to remove it. The time delay between the

fault detection and its subsequent fault removal is

assumed to represent the debugging complexity

of the faults.
5. The debugging process is imperfect.

6. Fault removal rate of the simple fault is

proportionality constant, whereas for hard and

complex is a logistic function as it is expected
the learning-process will grow with time.

7. The expected number of faults removed in(𝑡, 𝑡 +
∆𝑡) is proportional to the number of faults
remaining to be removed.

The following notations are used for the mathematical
development and formulation purpose:

𝑎𝑖 Fault-content of type𝑖(𝑎𝑖
3
𝑖=1 = 𝑎), where𝑎is

the total fault-content.

𝑏𝑖 Proportionality constant represents the fault
detection/isolation rate per fault of type i.

𝑏𝑖(𝑡) Logistic learning function represents the fault

removal rate per fault of type i.

𝑚𝑖𝑑 (𝑡) Mean number of fault detected of type iby t.

𝑚𝑖𝑖 (𝑡) Mean number of fault isolated of type iby t.

𝑚𝑖𝑟 (𝑡) Mean number of fault removed of type iby t.

𝛽𝑖 Inflection factor of debug personnelin the fault

removal rate per fault of type i.

𝑝𝑖 Probability of perfect debugging, i.e.,

debugging efficiencyof type i.

2.1 Modelling Approach Development

In this section we revisited software classification

model [8] that can be applied for reliability estimation
for a software project expected to contain three

different types of faults. The model categorise faults

of different complexity depending on their debugging
activities.Recall that the time delay between the fault

detection and subsequent fault removal represents the

complexity of the faults. Therefore, the model
assuming that the software contains three types:

simple, hard and complex.

A simple fault debugging is modelled as a 1-stage

process as follows:
𝜕

𝜕𝑡
𝑚1𝑟(𝑡) = 𝑏1(𝑎1 −𝑚1𝑟(𝑡)) (1)

The one-stage process as modelled above describes the

fault detection, fault isolation and fault removal
processes. Solving the differential equation (1) under

the boundary condition 𝑚1𝑟 𝑡 = 0 = 0, we get

𝑚1𝑟(𝑡) = 𝑎1(1 − 𝑒−𝑏1𝑡) (2)

The harder types of faults are assumed to take more

effort. In other words it also means that the debugging
team personnel have to spend more time to analyze the

detected faults and consequently need more effort to

remove them. Debugging process for such faults is
modelled as 2-stage process as follows:

𝜕

𝜕𝑡
𝑚2𝑑(𝑡) = 𝑏2(𝑎2 −𝑚2𝑑(𝑡))

The International Arab Conference on Information Technology (ACIT’2015)

𝜕

𝜕𝑡
𝑚2𝑟(𝑡) = 𝑏2(𝑡)(𝑚2𝑑(𝑡) −𝑚2𝑟(𝑡))

Where 𝑏2(𝑡) =
𝑏2

1+𝛽2𝑒
−𝑏2𝑡

(3)

The first stage of the two-stage process as modelled

above describes the fault detection and the fault isolation

process. The second stage describes the fault removal

process. Solving, the system of differential equations

given in (3) under the boundary conditions𝑚2𝑑 𝑡 =
0=0 and 𝑚2𝑟𝑡=0=0respectively, we get

𝑚2𝑟(𝑡) =
𝑎2 1− 1+𝑏2𝑡 𝑒

−𝑏2𝑡

1+𝛽2𝑒
−𝑏2𝑡

 (4)

The complex fault debugging process is modelled as a 3-

stage process,
𝜕

𝜕𝑡
𝑚2𝑑(𝑡) = 𝑏3(𝑎3 −𝑚2𝑑(𝑡))

𝜕

𝜕𝑡
𝑚3𝑖(𝑡) = 𝑏3(𝑚2𝑑(𝑡) − 𝑚3𝑖(𝑡))

𝜕

𝜕𝑡
𝑚3𝑟(𝑡) = 𝑏3(𝑡)(𝑚3𝑖(𝑡) − 𝑚3𝑟(𝑡))

Where 𝑏3(𝑡) =
𝑏3

1+𝛽3𝑒
−𝑏3𝑡

(5)

The first stage of the three-stage process as modelled

above describes the fault detection. The second stage

describes the fault isolation process. The third stage
describes the fault removal process. Solving the above

system of differential equations given in (5) under the

boundary conditions 𝑚3𝑑 𝑡 = 0 = 0, 𝑚3𝑖 𝑡 = 0 = 0

and 𝑚3𝑟 𝑡 = 0 = 0respectively, we get

𝑚3𝑟(𝑡) =
𝑎3 1− 1+𝑏3𝑡+𝑏3

2𝑡
2

2
 𝑒−𝑏3𝑡

1+𝛽3𝑒
−𝑏3𝑡

 (6)

The software fault classification model is the

superposition of the three NHPP with mean value
functions givens in equations (2), (4) and (6) as

𝑚 𝑡 = 𝑚𝑖𝑟 𝑡
3

𝑖=1

= 𝑎1 1 − 𝑒−𝑏1𝑡

+
𝑎2 1 − 1 + 𝑏2𝑡 𝑒

−𝑏2𝑡

1 + 𝛽2𝑒−𝑏2𝑡

+
𝑎3 1 − 1 + 𝑏3𝑡 + 𝑏3

2 𝑡
2

2
 𝑒−𝑏3𝑡

1 + 𝛽3𝑒
−𝑏3𝑡

(7)

To model the debugging phenomenon of each type of
fault directly in single stage considering the delay of

the removal process. The fault removal rate per fault

‗𝑑𝑖(𝑡)‘ for 𝑖 𝑖 = 1,2,3 fault-type, can be obtained as

𝑑1(𝑡) =

𝜕

𝜕𝑡
𝑚1𝑡

𝑎1 −𝑚1𝑡
= 𝑏1

𝑑2(𝑡) =

𝜕

𝜕𝑡
𝑚2𝑡

𝑎2 −𝑚2 𝑛

=
𝑏2 1 + 𝛽2 + 𝑏2𝑡 − 1 + 𝛽2𝑒

−𝑏2𝑡

 1 + 𝛽2 + 𝑏2𝑡 1 + 𝛽2𝑒−𝑏2𝑡

𝑑3(𝑡) =

𝜕

𝜕𝑡
𝑚3𝑡

𝑎3 −𝑚3 𝑛

=

𝑏3 1 + 𝛽3 + 𝑏3𝑡 + 𝑏3
2 𝑡

2

2
 − 1 + 𝑏3𝑡 1 + 𝛽3𝑒

−𝑏3𝑡

 1 + 𝛽3 + 𝑏3𝑡 + 𝑏3
2 𝑡

2

2
 1 + 𝛽3𝑒

−𝑏3𝑡

(8)

Note that 𝑑2(𝑡) and 𝑑3(𝑡) increase monotonically with

time t and tend to constants 𝑏2 and 𝑏3 respectively as

𝑡 → ∞. Thus, in the steady state, hard and complex

faults growth curves behave similar to the simple fault

growth curve and hence there is no loss of generality in

assuming the steady state rates 𝑏2 and 𝑏3 to be equal

to𝑏1. After substituting 𝑏3 = 𝑏2 = 𝑏1in the right hand

side of equation (8), one can see that 𝑑1(𝑡) > 𝑑2(𝑡) >
𝑑3(𝑡), which is in accordance with the complexity of
the faults [4,5,7,16].

Hence there is no loss of generality in assuming the

steady state 𝑏3 = 𝑏2 = 𝑏1 = 𝑏 and 𝛽3 = 𝛽3 = 𝛽1 = 𝛽

(say). Then we may write equation (7) as follows

𝑚 𝑡 = 𝑎1 1 − 𝑒−𝑏𝑡 +
𝑎2 1− 1+𝑏𝑡 𝑒−𝑏𝑡

1+𝛽𝑒−𝑏𝑡
+

𝑎3 1− 1+𝑏𝑡+𝑏2𝑡
2

2
 𝑒−𝑏𝑡

1+𝛽𝑒−𝑏𝑡
 (9)

2.2 Modelling Approach Formulation

In order to relax the perfect debugging assumption of

the software classification model [8] and given in (9),

we introduce the possibility of imperfect fault
debugging phenomenon. Incorporating the imperfect

fault debugging phenomenon in software reliability

modelling can be of immense help to the reliability
assessment as it is related to the efficiency of the

debugging team. However, the debugging team may

not be able to remove the fault perfectly and the

original fault may remain leading to a phenomenon
known as imperfect fault debugging. Accordingly the

debugging phenomenon can be described for the three

types of faults 𝑖 𝑖 = 1,2,3 with respect to time in a
single stage as follows:
𝜕

𝜕𝑡
𝑚𝑖(𝑡) = 𝑝𝑖𝑑𝑖(𝑡) 𝑎𝑖 −𝑚𝑖(𝑡) (10)

Solving the above system of difference equations (10),

with respect to equation (8) using the probability
generating function with the boundary conditions

𝑚1 𝑡 = 0 = 𝑚2 𝑡 = 0 = 𝑚3 𝑡 = 0 = 0,

respectively, one can get

𝑚1 𝑡 = 𝑎1 1− 𝑒−𝑝1𝑏1𝑡

𝑚2 𝑡 = 𝑎2 1 −
 1 + 𝛽2 + 𝑏2𝑡 𝑒

−𝑏2𝑡

1 + 𝛽2𝑒−𝑏2𝑡

𝑝2

𝑚3 𝑡

= 𝑎3 1 −
 1 + 𝛽3 + 𝑏3𝑡 + 𝑏3

2 𝑡
2

2
 𝑒−𝑏3𝑡

1 + 𝛽3𝑒−𝑏3𝑡

𝑝3

The International Arab Conference on Information Technology (ACIT’2015)

(11)

The proposed model is the superposition of all the
NHPP with mean value functions given in (11) and is

given as

𝑚 𝑡 = 𝑚𝑖 𝑛

3

𝑖=1

= 𝑎1 1 − 𝑒−𝑝1𝑏1𝑡

+ 𝑎2 1 −
 1 + 𝛽2 + 𝑏2𝑡 𝑒

−𝑏2𝑡

1 + 𝛽2𝑒
−𝑏2𝑡

𝑝2

+ 𝑎3 1

−
 1 + 𝛽3 + 𝑏3𝑡 + 𝑏3

2 𝑡
2

2
 𝑒−𝑏3𝑡

1 + 𝛽3𝑒
−𝑏3𝑡

𝑝3

(12)

The analysis of the fault removal per remaining

followed earlier with respect to equation (8) can be
applied here. Therefore, there is no loss of generality in

assuming the steady state𝑏3 = 𝑏2 = 𝑏1 = 𝑏,𝑝3 = 𝑝2 =
𝑝1 = 𝑝, and 𝛽3 = 𝛽2 = 𝛽 (say). Then we may write
equation (12) as follows

𝑚 𝑡 = 𝑎1 1 − 𝑒−𝑝𝑏𝑡

+ 𝑎2 1 −
 1 + 𝛽 + 𝑏𝑡 𝑒−𝑏𝑡

1 + 𝛽𝑒−𝑏𝑡

𝑝

+ 𝑎3 1

−
 1 + 𝛽 + 𝑏𝑡 + 𝑏2 𝑡

2

2
 𝑒−𝑏𝑡

1 + 𝛽𝑒−𝑏𝑡

𝑝

(13)

The above proposed model integrates the effect of three
types of fault debugging complexity and incorporates

the learning phenomenon of the debugger under

imperfect fault debugging environment.It should be

pointed out here that the proposed model given in
equation (13) is more general than that of the

classification model [8] and given in equation (9) since

it includes the effect of two types of imperfect fault
debugging, and has the models due to [7, 14, 21] as

special cases. Such modeling approach provides an

integrated common platform for not only software
reliability growth models with perfect fault debugging

but also for imperfect fault debugging.

3. Parameter Estimation Technique

Parameters estimation is of primary concern in software

reliability measurement. The maximum likelihood

estimation (MLE) method is employed to estimate the
unknown parameters of the models under comparison.

Since all data sets used are given in the form of

pairs 𝑛𝑖 − 𝑥𝑖 𝑖 = 1,2, … , 𝑓 , where 𝑥𝑖 the cumulative

number of faults is detected by 𝑛𝑖 test cases 0 < 𝑛1 <
𝑛 < ⋯ < 𝑛 and 𝑛𝑖 is the accumulated number of test

run executed to detect 𝑥𝑖 faults. The likelihood

function L for the unknown parameters with the

superposed mean value function 𝑚 𝑡 is given as

𝐿 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑛, 𝑥𝑖

=
 𝑚 𝑡𝑖 − 𝑚 𝑡𝑖 − 1

𝑥𝑖−𝑥𝑖−1

 𝑥𝑖 − 𝑥𝑖−1 !

𝑘

𝑖=1
𝑒− 𝑚 𝑡𝑖 −𝑚 𝑡𝑖−1

(16)

Taking natural logarithm of (16) we get

ln 𝐿 = 𝑥𝑖 − 𝑥𝑖−1
𝑘

𝑖=1
ln 𝑚 𝑡𝑖 − 𝑚 𝑡𝑖 − 1

− 𝑚 𝑡𝑖 −𝑚 𝑡𝑖 − 1 ln 𝑥𝑖
𝑘

𝑖=1

− 𝑥𝑖−1
(17)
The MLE of the unknown parameters can be obtained

by maximizing the likelihood function subject to the

parameters constraints.
For faster and accurate calculations, the statistical

package for social sciences (SPSS) based on the

nonlinear regression technique has been utilized for
the estimation of the parameters of the proposed

models and the models under comparison. Non-linear

regression is a technique of finding a nonlinear model

of the relationship between the dependent variable and
a set of independent variables. Unlike traditional

linear regression, which is restricted to estimating

linear models, non-linear regression can estimate
models with arbitrary relationships between

independent and dependent variables.

4. Data Analysis Technique

Before applying any software reliability model to a set

of fault detection data it is advisable to determine
whether the test data does, in fact, exhibit reliability

growth. If a set of test data does not exhibit increasing

reliability as debugging progresses, there is no point in
attempting to estimate and forecast the system‘s

reliability. Since the proposed model is a fault count

model, the test may only be applied to data in which
the test intervals are of equal length. Therefore, we

divided the computer test runs (0, 𝑓] into𝑘 units of

time of equal length. The trend test that is commonly

carried out is [3, 15]:

 Laplace Test. This test is superior from an

optimality point of view and is recommended

for use when the NHPP assumption is made. In

terms of 𝑛𝑖(𝑖 = 1,2,3, … , 𝑓) the number of fault

detected during unit of time 𝑖, the expression of

the Laplace factor is

𝑢𝑓 =
 𝑖−1
𝑓
𝑖=1 𝑛𝑖−

𝑓−1

2
 𝑛𝑖
𝑓
𝑖=1

 𝑓
2−1

12
 𝑛𝑖
𝑓
𝑖=1

 (18)

The International Arab Conference on Information Technology (ACIT’2015)

In the context of reliability growth, negative values

indicate decreasing failure intensity and thus a
reliability increase, positive values suggest increasing

failure intensity and thus a reliability decrease, and

values oscillating between -2 and +2 indicate stable

reliability. Laplace test provides information about
reliabilitytrend evolution. However, in order to evaluate

the reliability quantitatively, software reliability models

should be employed.

5. Model Validation & Comparison Criteria

To check the validity of the proposed software

reliability model, and to make a fair comparison with
other well-established existing models, we apply three

test datasets collected from real software development

projects to evaluate the goodness of fit of the models
under comparison. The criteria adopted for the purpose

are:

 Coefficient of Multiple Determinations (Squared).

This measure can be used to investigate whether

a significant trend exists in the observed failure
intensity. This coefficient is defined as the ratio

of the Sum of Squares (SS) resulting from the

trend model to that from a constant model
subtracted from 1, that is,

 𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = 1 −
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑆𝑆

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑆𝑆
(19)

Rsquared measures the percentage of the total

variation about the mean accounted for by the
fitted curve. It ranges in value from 0 to 1. Small

values indicate that the model does not fit the

data well.

 The mean square fitting error (MSE). The models

under comparison are used to simulate the test
data, the difference between the expected values,

𝑚 𝑛𝑖 and the observed data 𝑥𝑖 is measured by

MSE as follows:

𝑀𝑆𝐸 =
1

𝑓
 𝑚 𝑖(𝑡) − 𝑥𝑖

2𝑓
𝑖=1 (20)

where𝑓 is the number of observations.

 Bias. The difference between the observation and

prediction of number of faults at any instant of

time 𝑖 is known as 𝑃𝐸𝑖 (prediction error). The

average of 𝑃𝐸𝑠 is known as bias.

𝐵𝑖𝑎𝑠 =
1

𝑓
 𝑃𝐸𝑖
𝑓
𝑖=1 (21)

𝑃𝐸𝑖 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)𝑖

 Variation. The standard deviation of prediction

error is known as variation.

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =
1

𝑓−1
 𝑃𝐸𝑖 −𝐵𝑖𝑎𝑠 2𝑓
𝑖=1 (22)

 Root Mean Square Prediction Error (RMSPE). It

is a measure of closeness with which a model

predicts the observation.

𝑅𝑀𝑆𝑃𝐸 = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛2 (23)

In other words, we evaluate the performance of the

models under comparison using Rsquared, MSE, Bias,
Variation, and RMSPE metrics. For Rsquared, the larger

the metric value the better while for MSE, Bias,

Variation, and RMSPE, the smaller the metric value

the better the model fits relative to other models run on
the same test dataset.

6. Data Analyses and Model Comparison

This section presents the result of goodness-of-fit

comparisons. The performance of the proposed model
is compared to those of: the exponential model [2],

delayed S-shaped model [21], Inflection S-shaped

mode [11], Erlang model [5], and software fault
classification model [8].We employ five goodness of

fit criteria: Rsquared, MSE, bias, variation, and

RMSPEas criteria of the model comparison in this

section.

5.1 First Software Development Project

The first software test data had been collected during

20 weeks, spending 10,000 CPU hours of testing one

of four major releases of the software products at

Tandem Computers Company, Los Anglos (CA), 100
faults were detected during the period [18].

Figure 1.1 traces the Laplace trend test. The values of

the trend test are completely negative from beginning.
However, in period from 3

rd
 week till 9

th
 week we see

some fluctuations but this fluctuation doesn‘t affect

the reliability much and reliability has growing
behaviour and after 9

th
 week, the behaviour becomes

stable which means that reliability grew

monotonically.

Figure 1.1 Laplace test data trend

The unknown parameters of the models under
comparison have been estimated using the regression

module of SPSS. The values of estimated parameters

have been tabulated below in Table 1.1. The

estimation results of the proposed model depict an
ideal debugging environment, i.e., that the debugging

efficiency parameter ‗𝑝‘ is 100%. Although it seems

The International Arab Conference on Information Technology (ACIT’2015)

unrealistic but the probability of perfect debugging fault

parameter comes out to be one denying the presence of
imperfect fault debugging, which again makes the

results of proposed model equivalent to the of model

due to [8]. Hence any of these models can be chosen for

further analysis and represent the debugging process,
the choice can be subjective of the decision maker. The

value 33.05 for the shape parameter ‗𝛽𝑖‘ implies the s-

shaped of the actual test data due to the fact that only a
few faults are removed at the beginning and faults

rapidly become removed. It is estimated that a total of

105 faults are observed in the 20 weeks and all of them
were removed successfully in the same debugging

period.
Table 1.1. Parameter estimation results

Models under

Comparison

Parameter Estimation

a a1 a2 a3 b p β

Model due to [2] 134 — — — 1.46E-04 — —

Model due to [21] 102 — — — 5.07E-04 — 0

Model due to [11] 134 — — — 1.46E-04 0

Model due to [5] 122 62 0 60 3.64E-04 — —

Model due to [8] 105 48 57 0 6.38E-04 — 33.05

Proposed 105 48 57 0 6.38E-04 1 33.05

─ indicates the parameter is not part of the corresponding model

Table 1.2. Comparison criteria results

Models under

Comparison

Comparison Criteria

R squared MSE Bias Variation RMSPE

Model due to [2] 0.9905 7.61 0.448 2.792 2.828

Model due to [21] 0.9493 41.20 1.826 6.314 6.573

Model due to [11] 0.9905 7.61 0.448 2.792 2.828

Model due to [5] 0.9930 5.66 0.367 2.411 2.439

Model due to [8] 0.9974 2.09 0.073 1.481 1.483

Proposed 0.9974 2.09 0.073 1.481 1.483

Table 1.2 above provides the values of the goodness of

fit metrics obtained by the models under comparison. It

clearly shows that the proposed model is superior. The

fitting of the proposed model is illustrated graphically
in Figure 1.2. The fitting is excellent.

Figure 1. 2 Software reliability growth curves

5.2 Second Software Development Project

The second software test data had been collected during

21 weeks, spending 25.3 CPU hours of testing a real

time command and control application (systems T1) of

size 21.7K object instructions, 136 faults were

detected during the period [10].
Figure 2.1 traces the Laplace trend test. The values of

the trend test are oscillating between -2 and +2

indicate stable reliability. However, from 8
th

 week the

values are completely positive with some fluctuations
but this fluctuation doesn‘t affect the reliability much

and reliability has decay behaviour. As the duration of

the decrease seems long, attention must be paid to it.
Those situations in which reliability continues to

decrease can point to problems in the software [3].

Figure 2.1 Laplace test data trend

The unknown parameters of the models under

comparison have been estimated using the regression

module of SPSS. The values of estimated parameters
have been tabulated below in Table 2.1. The

estimation results of the proposed model depict an

imperfect fault debugging environment, i.e., that the

debugging efficiency parameter ‗𝑝‘ is 35.7%.
Therefore, imperfect fault debugging does not change

the content of faults in the software. The value 490.51

for the shape parameter ‗𝛽𝑖‘ implies the S-shaped of
the actual test data. It is estimated that a total of 147

faults are observed in the 21 weeks and all of them

were removed successfully in the same debugging
period.

Table 1.1. Parameter estimation results

Models under

Comparison

Parameter Estimation

a a1 a2 a3 b p β

Model due to [2] 150 — — — 0.086 — —

Model due to [21] 128 — — — 0.288 — —

Model due to [11] 150 — — — 0.086 — 0

Model due to [5] 153 101 52 0 0.140 — —

Model due to [8] 151 91 60 0 0.176 — 17.20

Proposed 147 104 43 0 0.426 0.357 490.5

─ indicates the parameter is not part of the corresponding model

Table 1.2. Comparison criteria results

Models under

Comparison

Comparison Criteria

R squared MSE Bias Variation RMSPE

Model due to [2] 0.99239 18.03 1.174 4.182 4.343

Model due to [21] 0.96595 80.77 3.502 8.481 9.176

Model due to [11] 0.99239 18.03 1.174 4.182 4.343

Model due to [5] 0.99372 14.90 0.923 3.840 3.950

The International Arab Conference on Information Technology (ACIT’2015)

Model due to [8] 0.99495 11.97 0.511 3.507 3.544

Proposed 0.99545 10.79 0.527 3.322 3.363

Table 2.2 above provides the values of the goodness of

fit metrics obtained by the models under comparison. It

clearly shows that the proposed model is superior to the

other models under comparison. Except for Bias metric
the fault classification model [8] got lower value. The

Fitting of the proposed model is illustrated graphically

in Figure 2.2. The fitting is excellent.
Based on our data analyses and model comparisons. We

may conclude that incorporating imperfect fault

debugging phenomenon yields better results.

Figure 2. 2 Software reliability growth curves.

7. Conclusion

Categorization the faults in the software system into

three types according to their debugging complexity

where each type is modelled by a different reliability
growth curve helps in capturing variability in the growth

curves depending on the debugging environment and at

the same time it has the capability to reduce either to

exponential or S-shaped growth curves.It is observed
that the incorporation of imperfect debugging increases

the credibility of the model. To increase the model

credibility, two types of imperfect debugging have been
incorporated. The results were fairly encouraging when

compared with other model developed under similar

environment. The results can be viewed through the

numerical illustrations shown in Tables and Figures
obtained after the estimation performed on three actual

test datasets cited from real software development

projects.Such type of integrated modeling approach is
very much suited for object-oriented and distributed

systems development environments. Another point

worth mentioning about the modelling approach is its
inbuilt flexibility. It can describe an imperfect

debugging phenomenon as exponential or S-shaped

growth curve. At the same time, it can describe the

situation where the imperfect debugging phenomenon
does not exist as seen in the first software project

development.

Since no single functional form can describe the

growth in number of faults during testing phase and
debugging process. This necessitates a modelling

approach that can be modified without unnecessarily

increasing the complexity of the resultant model. We

feel that the proposed modeling approach is a step in
that direction. The extension of the modeling approach

incorporating more types of faults is an ongoing

challenge that stimulates us to continue working on
this direction.

References

[1] Edris K., Shatnawi O., ―The Pham Nordmann

Zhang (PNZ) software reliability model

revisited,‖ Proc. 10
th
 IASTED International

Conference on Software Engineering, Innsbruck,
Austria, pp. 205-212, 2011.

[2] Goel A.L., and Okumoto K., ―Time Dependent

Error Detection Rate Model for Software
Reliability and other Performance Measures,‖

IEEE Transactions on Reliability,vol. 28, no. 3,

pp. 206-211, 1979.
[3] Kanoun K., Kaaniche M., and Laprie J-C.,

―Qualitative and Quantitative Reliability

Assessment,‖ IEEE Software, vol. 14, pp. 77-87,

1997.
[4] Kapur P.K., Bardhan A.K., and Shatnawi O.,

―Why Software Reliability Growth Modelling

should define Errors of Different Severity,‖
Journal of the Indian Statistical Association, vol.

40, no. 2, pp. 119-142, 2002.

[5] Kapur P.K., Garg B., and Kumar S.,
Contributions to Hardware and Software

Reliability, World Scientific, 1999.

[6] Kapur P.K., Pham H., Anand S., and Yadav K.,

―A Unified Approach for Developing Software
Reliability Growth Models in the Presence of

Imperfect Debugging and Error Generation,‖

IEEE Transactions on Reliability, vol. 60, no. 1,
pp. 331–340, 2011.

[7] Kapur P.K., Pham H., Gupta A., Jha P.C.,

Software Reliability Assessment with OR

Applications, Springer, 2011.
[8] Kapur P.K., Shatnawi O., and Yadavalli V.S.S.,

―A Software Fault Classification Model,‖ South

African Computer Journal, vol. 33, pp. 1-9,
2004.

[9] Misra P.N., ―Software Reliability Analysis,‖

IBM System Journal, vol. 22, no. 3, pp. 262-270,
1983.

[10] Musa J.D., Iannino A., and Okumoto K.,

Software Reliability: Measurement, Prediction,

Application, McGraw-Hill, 1978.

The International Arab Conference on Information Technology (ACIT’2015)

[11] Ohba M., ―Software Reliability Analysis Models,‖

IBM Journal of Research and Development,
vol.28, no. 4, pp. 428-443, 1984.

[12] Pham H., Nordmann L., and Zhang X., ―A General

Imperfect Software-Debugging Model with S-

shaped Fault Detection Rate,‖ IEEE Transactions
on Reliability, vol. 48, No. 2, pp. 169-175, 1999.

[13] Pham H., Software reliability. Springer, 2000.

[14] Shatnawi O., ―Discrete Time NHPP Models for
Software Reliability Growth Phenomenon,‖

International Arab Journal of Information

Technology, vol. 6, No. 2, pp. 124-131, 2009.
[15] Shatnawi O., ―Measuring Commercial Software

Operational Reliability: An Interdisciplinary

Modelling Approach,‖

EksploatacjaiNiezawodność - Maintenance and
Reliability, vol. 16, no. 4, pp. 585–594, 2014.

[16] Shatnawi O., and Kapur P.K., ―A Generalized

Software Fault Classification,‖ WSEAS
Transactions on Computers, vol. 7, no. 9, pp.

1375–1384, 2008.

[17] Shatnawi O., ―Testing-effort dependent software
reliability model for distributed systems,‖

International Journal of Distributed Systems and

Technologies, vol. 4, no. 2, pp. 1-14, 2013.

[18] Wood A., ―Predicting Software Reliability,‖ IEEE
Computers, vol. 29, issue 11,pp 69-77, 1996.

[19] Xie M., Software reliability modelling. World

Scientific, 1991.
[20] Yamada S., Software Reliability Modeling:

Fundamentals and Applications, Springer, 2014.

[21] Yamada S., Ohba M., and Osaki S., ―S-shaped

Reliability Growth Modelling for Software Error
Detection,‖ IEEE Transactions on Reliability;vol.

32, no. 5, pp. 475-478, 1983.

[22] Yamada S., Osaki S., and Narihisa H., ―Software
Reliability Growth Models with Two Types of

Errors,‖ RechercheOperationnelle / Operations

Research (RAIRO), vol. 19, no. 1, pp. 87-104,
1985.

Omar Shatnawi received his
PhD, in computer science and

his MSc in operational research

from University of Delhi in
2004 and 1999, respectively.

Currently, he is the deputy dean

of the prince Hussein bin

Abdullah College for Information Technology at Al
al-Bayt University, Jordan. His research interests are

in software reliability engineering, with an emphasis

on improving software reliability and dependability.
He has co-edited a special issue on "Reliability and

Optimization, June 2014" of the International Journal

of Systems Assurance Engineering and Management

(Springer). He has been conferred an award by the

Society for Reliability Engineering, Quality, and
Operations Management (SREQOM) at the 17

th

ICQRIT'2015 for promising contributions in Software

Reliability Engineering.

