
 

The International Arab Conference on Information Technology (ACIT’2015) 

 

 

 

Ideal Software Architecture for the Automotive 

Industry  

Adnan Shaout, and Gamal Waza 

The Electrical and Computer Engineering Department 

The University of Michigan - Dearborn 

Dearborn, Michigan, USA 

shaout@umich.edu; gwaza@umich.edu 

 

 

Abstract - An Ideal Software Architecture is the 

foundation to solving software engineering methods. In 

this paper, all of the automotive industry current and future 

challenges will be analyzed, and the paper will propose an 

Ideal Software Architecture for the automotive industry. 

After gathering all the requirements, software architecture 
styles will be evaluated against the unique environment 

found in the automotive industry. Research results show 

that the component based and layered architectural styles 

were the most suitable for the automotive industry. Some 

other architectural styles were suitable for particular layer 

and/or component. One of the most interesting outcomes 

of this research was the introduction of run-time 

adaptation to the automotive software architecture. This 

was handled by introducing the Dynamic Configuration 

manager Module in the middleware layer. Finally, an ideal 

architecture design that solves all current and future 

concerns was presented.  

Keywords–Software for Automotive Industry, Software 

Architecture, Dynamic Configuration Manager, Layered 
Software 

1. Introduction 

In the past 30 years, the amount of software in cars has 

been growing. Cars in the future also expect to demand 

more and more software functionalities. Additionally, the 

automotive industry has specific constraints and 

requirements that mandate unique solutions [1].  These 

specific constraints also bring many challenges to software 

engineering in cars [2]. Therefore, there is an opportunity 

for an automotive software engineeringresearch to help 

solve many current and future challenges [3, 4]. 

An Ideal Software Architecture is the foundation to 

solving software engineering methods. In this paper, all of 

the automotive industry current and future challenges will 

be analyzed and the paper will present an Ideal Software 

Architecture for the automotive industry. 

The paper is organized as follows; Section 3 of the paper 

will present the current and future challenges of software 

engineering by analyzing the needs and concerns of all the 

involved stakeholders.  In section 4 software architecture 

requirements will be generated to address all current and 

future challenges. Section 5 will present the software 

architecture design were the requirements will be used as 

input to choose most suitable design decisions. Section 6 
will present the layered Ideal Software Architecture for the 

automotive industry.  Finally, section 7 presents 

conclusion remarks. 

2. Automotive Industry Challenges Study 

A challenging tree was constructed by starting with all 

automotive industry stakeholders. Then, needs, concerns 

and challenges of each stakeholder were listed. Finally, 

software architecture requirements were identified for each 

branch. [1][5][6][7][8][9] 

Figure 1shows the basic overview for the challenges 

tree. 

mailto:shaout@umich.edu
mailto:gwaza@umich.edu


 

The International Arab Conference on Information Technology (ACIT’2015) 

 

 

 

 

Figure 1: Automotive Industry Challenges Tree. 

3. Software Architecture Design 

3.1. Requirements Analysis 

Requirements was analyzed and categorized to 

better understand system effect. Some requirements 

impacted the overall architecture, but, other 

requirements were very straight forward. For example, 

addressing quickly changing platforms has a big 

impact to the architecture style. On the other hand, the 

requirements for a functional safe Real-Time OS was 

straight forward. So, from the high level analysis, we 

generated core requirements to assist in the design 

decision.  

 

Table 1 show the software architecture 

requirements analysis summary. As seen in table 2, 

the core architecture requirements are specified as 

follows: 

o Features-Specific Software 

o Hardware-Specific Software 

o Communication Abstraction 

o Functional Safe Real-Time OS 

o Dynamic Configuration Manager 

Module 

Table 1: Software Architecture Requirements Analysis. 

 



 

The International Arab Conference on Information Technology (ACIT’2015) 

 

 

 

 

3.2. Architecture Design  

Software architecture design approach 

considered the following Goals 

o Increase Design qualities 

 Design Quality Attributes 

o Faster Development 

o Lower Cost 

o Meet all Software Architecture 

Requirements 

 

3.3. Software Architecture Styles 

The software architecture styles that were 

considered are as follows [3, 10]: 

o Layered Architectural Style 

o Component-Based Architectural 

Style 

o Service-Oriented Architectural Style 

o Data Centric Architectural Style 

 

3.4. Chosen Software Architectural Styles 

Software architecture styles were evaluated against the 

requirements generated from the unique environment 

found in the automotive industry. Results show that the 

component based and layered architectural styles were the 

most suitable for the automotive industry as shown 

instable 2. 

 

Some other architectural styles were suitable for 

particular layer and/or component. For example, data 

centric architectural style was used to address concerns 

with the complex interaction of the many application 

components. The Application Communication Abstraction 

Layer (ACAL) was chosen to have data centric approach 

for all application components. Finally, an ideal 

architecture design was proposed and determined that 

solves all current and future concerns [3]. 

Table 2: Architecture Styles Analysis 

 

4. Layered Arch vs. Component-Based Arch 

Styles Analysis  

 

After determining that Layered and component-

based architecture styles are the most suitable for the 

ideal auto industry software architecture, further 

analysis was necessary to determine which of the two 

styles is more suitable to be the high level 

architecture. Table 3 shows the performance 

comparison between layered and component based 

architectural styles.  As seen in table 3, Layered 

architecture is the most suitable high level architecture 

for the automotive industry. Results make sense given 

the need for logical separation of hardware specific 

and vehicle features specific functionalities. Finally, 

given the high score of component based architecture 

style, it was decided to design each layer with 

component based architecture style [3, 10]. 



 

The International Arab Conference on Information Technology (ACIT’2015) 

 

 

 
Table 3: Layered Arch vs. Component-Based Arch Styles Analysis

 
5. Software Architectural High-Level Design 

The most suitable high-Level Architecture Design 

was chosen to be Layered architecture style. As seen in 

figure 2, the layered architecture separated the application 

specific from hardware specific functionalities [3].  The 

layered architecture has the following layers: 

o Application Abstraction Layer 

o Middleware layer 

o OS 

o Hardware Abstraction Layer (HAL) 

 

 

Figure 2: Software Architecture Design – Layered View. 

Component-based architecture was used throughout 

the design to address many of the concerns in the 

automotive industry as shown in figure 3. For example, the 

application layer was chosen to be component-based style 

due to large amount of features and the need for many 

different suppliers to work on these features [10]. 

 

Figure 3: Software Architecture Design – Components 

View. 

5.1 Software Architecture Design Details 

5.1.2 Application Abstraction Layer 

This layer is abstracted from any platform or 

hardware specific functionalities. It’s designed for 
addressing features specific functionalities regardless of 

hardware or platform selected. To address the scalability 



 

The International Arab Conference on Information Technology (ACIT’2015) 

 

 

 
and modularity concerns in this layer, it was designed as a 

component-based style. 
 

To maximize software quality attributes, software 

components should be designed with the aim to achieve 

product line development. Therefore, application 

components are designed with separated common from 

configurable software elements. In the common part, core 

assets to be established to achieve high reusability and 

portability. In addition, configurable part of the component 

to be designed with all product variation configurations. 

(See Figure 4) 

 
 

5.1.3 Middleware layer 

The middleware layer is designed to provide core services 
to the application layer. This layer will also abstract 

communication challenges from the application layer. 

Middleware layer core services will be abstracted from 

hardware specific software via standardized interfaces.  

The middleware layer is made of the following layer 

components (as seen in figure 4): 

o Application Communication Abstraction layer 

(ACAL) 

o Core Services Layer (CSL) 

o Dynamic Configuration Manager (DCM) 

 

 

Figure 4: Middleware Layer Detailed View. 

 

5.1.4 OS 

The OS is s separate component and is treated as one of 

the core elements abstracted from application, middleware 

and hardware layers. Given the direct requirements, OS 

component must be real-time and support functional safety 

features. 

 

5.1.5 Hardware Abstraction Layer (HAL) 

The Hardware Abstraction Layer is designed to abstract all 

hardware related functionalities as shown in figure 6. 

Hardware specific functionalities can be related to the 
selected microcontroller or to the electronic control unit 

(ECU) hardware design. So, we separate the Micro-

specific from the ECU-specific to address the concern with 

reusing micro specific software across ECUs. To 

maximize reusability and to ease components integrations, 

all interactions with HAL are done via standardized 

Interfaces. 

 

 

5.1.6 Application Communication Abstraction layer 
(ACAL) 

 

ACAL is designed to abstract application 

components interactions. This is done by allowing 

application components to read and write signals to 

and from a shared memory that is transparent to 

application layer. ACAL reads and writes signals from 

and to Core service layer if data needs to be 

communicated from and another ECU as shown in 

figures 7 and 8. 

 
5.1.7 Dynamic Configuration Manager (DCM) 

 

 Due to the need for run-time adaptation and 

configuration, dynamic configuration manger (DCM) 

module is designed to handle the dynamic 

configuration of ECUs. Its functions are the 

following: 

 

a) Install new Application components (New 

Apps) 

b) Update existing Apps 

c) Remove existing Apps 

 

The benefits of the DCM are as follows: 

 

1. Apps are updated over the air instantly 

2. Maximum benefits of cloud computing 

 

5.1.7.1 The Cloud to the electronic 

control unit (ECU) Configuration Process 

trails the following steps: 

1. Cloud sends am encrypted update 

request to targeted vehicle 

2. Vehicle receives Update request 

3. Master ECU buffers the complete 

request 

4. Master ECU sends corresponding 

update requests to targeted ECUs 

5. Targeted ECUs validate request 

6. Targeted ECUs decrypt and store 

requests and make them ready for 

launch 

7. Master ECU waits for all dependent 

components to be ready for launch 

8. Master ECU sends launch request  

9. New application components are 

running 

 

The DCM Configuration Process on an ECU 

level trails the following steps: 

1. App Update request received by an 

ECU 

2. Request is read by DCM  



 

The International Arab Conference on Information Technology (ACIT’2015) 

 

 

 
3. Request is written to memory (see 

figure 5) 

 

 
Figure 5: ECU internal Configuration process 1 of 3. 

 

4. DCM acknowledges completion of 

app installation 

5. ECU receives Launch request by 

master ECU 

6. DCM Configures the following 

tables for Application components 

reconfiguration: 

 OS Configuration Table 

for tasks reconfiguration 

 Core Services Table for 

signals mapping and 

reconfiguration 

 ACAL Configuration 

Table for signals 

reconfiguration 

7. New/Updated App is running (see 

figure 6) 

 
Figure 6: ECU internal Configuration process 3 of 3. 

 

6. Conclusion  

 

The automotive industry has unique challenges that require 

careful study of its current software engineering 

challenges. In this paper, we thoroughly analyzed the 

requirements of the automotive industry as whole by 

analyzing the needs and challenges of all involved 

stakeholders. Then, many software architecture 

requirements were presented.  

 

Software architecture requirements were summarized into 

a manageable list. The list was further analyzed to map 

requirement into architecture design considerations. After 

that, software architecture solutions and techniques were 

considered to address the proposed requirements. Software 

Architecture styles was one of the main architectural 

techniques that was studied thoroughly in this paper. 

Results show that the component based and layered 

architectural styles were the most suitable for the 

automotive industry. This is due to the increasing 

complexity and the increasing demand for more software. 

Some other architectural styles were suitable for particular 

layer and/or component. For example, data centric 

architectural style was used to address concerns with the 

complex interaction of the many application components. 

The Application Communication Abstraction Layer 

(ACAL) was chosen to have data centric approach for all 

application components.  

 

The paper also presented the core requirements proposed 

for the high level architecture requirements. The following 

summarizes all the main features that the new ideal 

software architecture for the automotive industry includes: 

1. Features-Specific Software which was addressed 

by the application abstraction layer 

2. Hardware-Specific Software which was addressed 

by the hardware abstraction layer 

3. Communication Abstraction which was addressed 

by the middleware  layer 

4. Functional Safe Real-Time OS 

a. OS is separated that is Real-Time and 

functionally-safe 

5. Dynamic Configuration Manager Module (DCM) 

a. DCM for automotive was introduced in the 

middleware layer 

 

One of the most interesting outcomes out of this research 

paper was the introduction of run-time adaptation to the 

automotive software architecture. This was handled by 

introducing the Dynamic Configuration manager Module 

in the middleware layer. Finally, an ideal architecture 

design was presented that can solve all current and future 

concerns. 

References 

[1] Bray, Manfred, “Challenges in Automotive Software 

Engineering “, The Proceeding ICSE '06 Proceedings of 



 

The International Arab Conference on Information Technology (ACIT’2015) 

 

 

 
the 28th international conference on Software engineering, 

Pages 33-42, ACM New York, NY, USA ©2006. 

[2] Adman Shout and Jamal Waza (2015), “Solutions to 

Automotive Software Engineering Challenges”, the 

International Journal of Computer & Organization Trends 

(IJCOT), Volume X Issue Y – January 2015. 

[3] El-Haik and Adnan Shaout, Software design for six-

sigma – A roadmap for excellence.  John Wiley, ISBN 

978-0-470-40546-8, 2010. 

[4] Adnan Shaout and Cassandra Dusute, (2013),” ResPCT 

– A new Software Engineering Method”, International 

Journal of Application or Innovation in Engineering & 

Management (IJAIEM) 12/2013; Volume 2(Issue 12): 

Page 436 – 442, Impact Factor: 2.379. 

[5] Alexander Pretschner, Manfred Broy, Ingolf H. 

Kruger, Thomas Stauner, “Software Engineering for 

Automotive Systems: A Roadmap” the proceedings of 

FOSE '07: 2007 Future of Software Engineering, May 

2007. 

[6] Dan Gunnarsson, Stefan Kuntz, Glenn Farrall, Akihito 

Iwai, Rolf Ernst, “Trends in automotive embedded 

systems”, the Proceeding ofEMSOFT '12 Proceedings of 

the tenth ACM international conference on Embedded 

software, Pages 9-10, ACM New York, NY, USA ©2012 

October 2012. 

[7]http://www.autosar.org/fileadmin/files/presentations/A

UTOSAR_OA_Summit_04NOV2014.pdf 

[8] ArkadebGhosal, Paolo Giusto, Alberto Sangiovanni-

Vincentelli, Joseph D'Ambrosio, Ed Nuckolls, Harald 

Wilhelm, Jim Tung, Markus Kuhl, Peter van Staa, 

“Education panel- designing the always connected car of 

the future”, the Proceeding of DAC '10 Proceedings of the 

47th Design Automation Conference, Pages 617-618, 

ACM New York, NY, USA ©2010.  

[9] Simon Fürst, “Challenges in the Design of Automotive 

Software”, the '10: Proceedings of the Conference on 

Design, Automation and Test in Europe, March 2010. 

[10] Software Architecture 2 by 

MouradChabanneOussalah (Editor)ISBN: 978-1-84821-

688-4 256 pages September 2014, Wiley-ISTE 


